Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcriptional fidelity of histone genes injected into Xenopus oocyte nuclei

Abstract

Previous work has indicated that at least some of the genetic information required for the expression of sea urchin histone genes is recognized following injection of the gene repeat (h22) into Xenopus oocyte nuclei1,2. The ability to elicit the expression of cloned genes and their sequence-manipulated counterparts is proving invaluable in analysing the molecular details of gene expression2,3. Direct injection of such genes into Xenopus oocyte nuclei remains one of the simplest methods for obtaining such expression and a remarkable degree of transcriptional fidelity has been demonstrated using this system with RNA polymerase III genes4–9, and to a lesser extent with rDNAs transcribed by RNA polymerase I10,11. In the case of polymerase II genes there is ample evidence for coupled transcription–translation12–14, but the degree of transcriptional fidelity involved may, as has recently been shown for the ovalbumin gene15, be minimal. However, clearly if the oocyte is to be used to investigate transcriptional regulation of such genes, transcriptional fidelity defined as the production of correct RNA termini, rather than the production of ‘functional mRNAs’ (ref. 15), must pertain16. Here we demonstrate such fidelity in the expression of all five Psammechinus miliaris histone genes comprising a repeat unit. However, we find large quantitative variations in the levels of synthesis of the individual correct termini and hence of the mRNAs. In addition to the mRNAs, species with no detectable counterparts in the sea urchin are generated off the coding strand, as are heterogeneous noncoding species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Probst, E., Kressmann, A. & Birnstiel, M. L. J. molec. Biol. 135, 709 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Birnstiel, M. L. & Chipchase, M. Trends biochem. Sci. 2, 149 (1977).

    Article  CAS  Google Scholar 

  4. Brown, D. D. & Gurdon, J. B. Proc. natn. Acad. Sci. U.S.A. 74, 2064 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Kressmann, A., Clarkson, S. G., Pirrotta, V. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 75, 1176 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Telford, J. L. et al. Proc. natn. Acad. Sci. U.S.A. 76, 2590 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Kressmann, A., Hofstetter, H., Di Capua, E., Grosschedl, R. & Birnstiel, M. L. Nucleic Scids Res. 7, 1749 (1979).

    Article  CAS  Google Scholar 

  8. Cortese, R., Melton, D., Tranquilla, T. & Smtih, J. D. Nucleic Acids Res. 5, 4593 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. De Robertis, E. M. & Olson, M. V. Nature 268, 137 (1979).

    Article  ADS  Google Scholar 

  10. Trendelenburg, M. F., Zentgraf, H., Franke, W. W. & Gurdon, J. B. Proc. natn. Acad. Sci. U.S.A. 75, 3791 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Trendelenburg, M. F. & Gurdon, J. B. Nature 276, 292 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. De Robertis, E. D. & Mertz, J. E. Cell 12, 175 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Rungger, D. & Türler, H. Proc. natn. Acad. Sci. U.S.A. 75, 6073 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Etkin, L. D. & Maxon, R. E. Devl Biol. 75, 13 (1980).

    Article  CAS  Google Scholar 

  15. Wickens, M. P., Woo, S., O'Malley, B. W. & Gurdon, J. B. Nature 285, 628 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kressmann, A., Clarkson, S. G., Telford, J. L. & Birnstiel, M. L. Cold Spring Harb. Symp. quant. Biol. 42, 1077 (1977).

    Article  Google Scholar 

  17. Hentschel, C., Irminger, J. C., Bucher, P. & Birnstiel, M. L. Nature 285, 147 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Woodland, H. R. & Wilt, F. H. Devl Biol. 75, 199 (1980).

    Article  CAS  Google Scholar 

  19. Sutcliffe, J. G. Nucleic Acids Res. 5, 2727 (1978).

    Google Scholar 

  20. Kressmann, A. & Birnstiel, M. L. NATO Advanced Study Institutes Ser. A31 (1980).

  21. Gross, K., Probst, E., Schaffner, W. & Birnstiel, M. L. Cell 8, 455 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, R. J. molec. Biol. 51, 501 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Stark, G. R. & Williams, J. G. Nucleic Acids Res. 6, 195 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, C., Probst, E. & Birnstiel, M. Transcriptional fidelity of histone genes injected into Xenopus oocyte nuclei. Nature 288, 100–102 (1980). https://doi.org/10.1038/288100a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288100a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing