Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications for the primitive atmosphere of the oxidation state of Earth's upper mantle

Abstract

Knowledge of the oxidation state of the Earth's mantle is critical for understanding the processes of magma genesis and the composition of deep-seated volatiles. Measurements reported here of the intrinsic oxygen fugacities ( f O 2 s) of mantle-derived spinels from peridotite and megacryst assemblages show that the Earth's upper mantle is close to the synthetic iron-wustite (IW) buffer curve in f O 2 versus T space. It seems likely that most erupted volcanics are oxidized after their formation, perhaps by diffusive H2 loss1. There is a strong possibility that the mantle was in equilibrium with a core-forming metal phase, and that subsequent oxidation of the upper mantle resulted from an interaction between the present oxidizing atmosphere–hydrosphere and the mantle by subduction processes. Evidence in support of this mechanism has been supplied by rare-gas analyses of deep-seated nodules from kimberlites2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sato, M. Geophys. Res. Lett. 5, 447–449 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Kaneoka, I., Takaoka, N. & Aoki, K.-I. Earth planet. Sci. Lett. 36, 181–186 (1978).

    Article  ADS  Google Scholar 

  3. Ringwood, A. E. The Origin of the Earth and Moon (Springer, New York, 1979).

    Book  Google Scholar 

  4. Johnson, F. S. Space Sci. Rev. 9, 303–324 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Levine, J. S. in Comparative Planetology (ed. Ponnamperuma, C.) 165–182 (Academic, New York, 1978).

    Book  Google Scholar 

  6. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, New York, 1977).

    Google Scholar 

  7. Haggerty, S. E. Geophys. Res. Lett. 5, 443–446 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Bence, A. E., Grove, T. L. & Papike, J. J. Precamb. Res. 10, 249–279 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Sato, M. Geol. Soc. Am. Mem. 135, 289–307 (1972).

    Google Scholar 

  10. Arculus, R. J. & Delano, J. W. Lunar planet. Sci. 11, 28–30 (1980).

    ADS  Google Scholar 

  11. Arculus, R. J. & Delano, J. W. Geochim. cosmochim. Acta (in the press).

  12. Ulmer, G. C., Rosenhauer, M. & Woermann, E. Trans. Am. Geophys. Un. 61, 413 (1980).

    Google Scholar 

  13. Flynn, R. T., Ulmer, G. C. & Sutphen, C. F. J. Petrol. 19, 136–152 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Snethlage, R. & Klemm, D. D. Contr. Miner. Petrol. 67, 127–138 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Binns, R. A., Duggan, M. B. & Wilkinson, J. F. G. Am. J. Sci. 269, 132–168 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Evans, S. H. Jr & Nash, W. P. Am. Miner. 64, 249–267 (1979).

    CAS  Google Scholar 

  17. Frey, F. A., Green, D. H. & Roy, S. D. J. Petrol. 19, 463–513 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Jagoutz, E. et al. Proc. 10th Lunar planet. Sci. Conf, 2031–2050 (1979).

  19. Haggerty, S. E. Miner. Soc. Am. Short Course 3, Hg 101–277 (1976).

    Google Scholar 

  20. Boettcher, A. L. & O'Neil, J. R. Am. J. Sci. (in the press).

  21. Menzies, M. & Murthy, V. R. Earth planet. Sci. Lett. 46, 323–334 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Ulmer, G. C. et al. Am. Miner. 61, 653–660 (1976).

    CAS  Google Scholar 

  23. Ringwood, A. E. Geochem. J. 11, 111–135 (1977).

    Article  CAS  Google Scholar 

  24. Murthy, R. V. & Hall, H. Phys. Earth planet. Inter. 2, 276–282.

  25. Ringwood, A. E. Geochim. cosmochim. Acta 15, 195–212 (1958).

    Article  ADS  CAS  Google Scholar 

  26. Mao, H.-K. Yb. Carnegie Instn Wash. 73, 510–518 (1974).

    Google Scholar 

  27. DePaolo, D. J. & Wasserburg, G. J. Geophys. Res. Lett. 4, 465–468 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Taylor, S. R., Johnson, R. W., Arculus, R. J. & Perfit, M. R. Basaltic Volcanism, Ch. 1 (NASA, in the press).

  29. Arculus, R. J. Tectonophysics (in the press).

  30. Wyllie, P. J. Tectonophysics 17, 189–209 (1971).

    Article  ADS  Google Scholar 

  31. Wyllie, P. J. in Energetics of Geological Processes (eds Saxena, S. K. & Bhattacharji, S.) 389–433 (Springer, New York, 1977).

    Book  Google Scholar 

  32. Rubey, W. W. Bull. geol. Soc. Am. 62, 1111–1147 (1951).

    Article  CAS  Google Scholar 

  33. Holland, H. D. in Petrologic Studies: A Volume in Honor of A. F. Buddington (eds Engle, A. E. J., James, H. L. & Leonard, B. F) 447–477 (Geological Society of America, New York, 1962).

    Google Scholar 

  34. Arculus, R. J. & Delano, J. W. Geochim. cosmochim. Acta (submitted).

  35. Chou, C.-L. Proc. 9th Lunar planet. Sci. Conf. 219–230 (1978).

  36. French, B. M. Rev. Geophys. 4, 223–253 (1966).

    Article  ADS  CAS  Google Scholar 

  37. Heald, E. F. Am. J. Sci. 266, 389–401 (1968).

    Article  ADS  CAS  Google Scholar 

  38. Karzhavin, V. K. & Vendillo, V. P. Geochim. Int. 7, 797–803 (1970).

    Google Scholar 

  39. Hunten, D. M. J. atmos. Sci. 30, 1481–1494 (1973).

    Article  ADS  CAS  Google Scholar 

  40. Miller, S. L. & Urey, H. C. Science 130, 245–251 (1959).

    Article  ADS  CAS  Google Scholar 

  41. O'Hara, M. J. Scott. J. Geol. 1, 19–40 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arculus, R., Delano, J. Implications for the primitive atmosphere of the oxidation state of Earth's upper mantle. Nature 288, 72–74 (1980). https://doi.org/10.1038/288072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288072a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing