Letter | Published:

Lack of heterogeneity in anti-hapten antibodies of a phylogenetically primitive shark

Abstract

Individual mammals have the capacity to express at least one million distinct antigen binding specificities, implying a high degree of structural heterogeneity in the variable heavy and light chain (VH and VL) portions of the antibody molecules. Studies of higher vertebrate species suggest that this heterogeneity is created both through a sizeable repertoire of germ-line VH and VL genes1 and through random rearrangements of V and joining genes2–4. Additional somatic mechanisms probably also contribute to the ultimate heterogeneity; one-third of murine plas-macytomas producing λ1 immunoglobulin carry a somatically mutated Ig1-V gene5,6. The relative contributions of these various mechanisms to the overall immunoglobulin variability are difficult to evaluate. The production of different antibodies to a defined determinant in different individuals of an inbred mouse strain [for example, (3-iodo-4-hydroxy-5-nitrophenyl) acetyl (NIP) in CBA mice7] suggests the involvement of somatic mutations or rearrangement but does not rule out the possibility that each individual CB A mouse expresses only a small random fraction from a large germ-line repertoire of V genes determining different anti-NIP binding sites. The opposite finding, that different individuals produce nearly identical antibodies to a defined determinant, would suggest the presence and expression of a limited number of germ-line genes without somatic alterations. Data presented here suggest that primitive sharks (Heterodontus fransisci)8 produce such antibodies to the hapten furyloxazolone.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Seidman, J. G., Leder, A., Nau, M., Norman, B. & Leder, P. Science 202, 11–17 (1978).

  2. 2

    Max, E. E., Seidman, J. G. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 76, 3450–3454 (1979).

  3. 3

    Sakano, H., Hüppi, K., Heinrich, G. & Tonegawa, S. Nature 280, 288–294 (1979).

  4. 4

    Rao, D. N., Rudikoff, S., Krutzsch, H. & Potter, M. Proc. natn. Acad. Sci. U.S.A. 76, 2890–2894 (1979).

  5. 5

    Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).

  6. 6

    Cohn, M. et al. in The Immune System (eds Sercarz, E. E. et al.) (Academic, London, 1974).

  7. 7

    Kreth, H. W. & Williamson, A. R. Eur J. Immun. 3, 141–147 (1972).

  8. 8

    Stahl, B. J. Vertebrate History: Problems in Evolution, 185 (McGraw-Hill, New York, 1974).

  9. 9

    Litman, G. W., Scheffel, C. & Mäkelä, O. Immun. Lett. 1, 213–215 (1980).

  10. 10

    Mäkelä, O., Kaartinen, M., Pelkonen, J. L. T. & Karjalainen, K. J. exp. Med. 148, 1644–1660 (1978).

  11. 11

    Boyle, M. D. P. & Langone, J. J. J. immun. Meth. 32, 51–58 (1980).

  12. 12

    Sarvas, H. & Mäkelä, O. Immunochemistry 7, 933–943 (1970).

  13. 13

    Voss, E. W. Jr, Groberg, W. J. Jr & Fryer, J. L. Immunochemistry 15, 459–464 (1978).

  14. 14

    Kehoe, J. M., Sharon, J., Gerber-Jensen, B. & Litman, G. W. Immunogenetics 7, 34–40 (1978).

  15. 15

    Litman, G. W., Scheffel, C. & Gerber-Jensen, B. J. Immunogenet. 7, 197–206 (1980).

  16. 16

    Becker, M. J., Ray, A., Andersson, L. C. & Mäkelä, O. Eur. J. Immun. 5, 262–266 (1975).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.