Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytochalasin D does not produce net depolymerization of actin filaments in HEp-2 cells

Abstract

The altered morphology, disappearance or ‘disruption’ of actin filaments (microfilaments) in cells treated with cytochalasin1 has sometimes been attributed to depolymerization of filamentous actin (F-actin) to its globular subunit (G-actin), but attempts to confirm that mechanism have been inconclusive. Treatment of purified actin filaments with cytochalasin B (CB) decreased their viscosity2,3, consistent with depolymerization, which was not, however, revealed by electron microscopy4, although the filaments appeared abnormal5. CB also increased the ATP-ase activity of F-actin, suggesting that it had been destabilized3, while actin filaments in the acrosomal process were not depolymerized6. CB or cytochalasin D (CD) can dissolve actin gels (reviewed in ref. 7, see also refs 8 and 9) without depolymerizing their filaments. The ‘disrupted’ actin structures in CD-treated cells bound heavy meromysin10, indicating that at least some of the cellular actin was filamentous. Using a rapid assay for G- and F-actin in cell extracts, based on the inhibition of DNase I11, we have found that neither short-nor long-term exposure of HEp-2 cells to CD produce net depolymerization of actin filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tanenbaum, S. W. (ed.) Cytochalasins Biochemical and Cell Biological Aspects (Elsevier/North-Holland, Amsterdam, 1978).

  2. Spudich, J. A. & Lin, S. Proc. natn. Acad. Sci. U.S.A. 69, 442–446 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Löw, I. & Dancker, P. Biochim. biophys. Acta 430, 366–374 (1976).

    Article  Google Scholar 

  4. Forer, A., Emerson, J. & Behnke, D. Science 175, 774–776 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Spudich, J. A. Cold Spring Harb. Symp. quant. Biol. 37, 585–594 (1972).

    Article  Google Scholar 

  6. Sanger, J. W. & Sanger, J. M. J. exp. Zool. 193, 441–447 (1975).

    Article  CAS  Google Scholar 

  7. Weihing, R. R. in Cytochalasins Biochemical and Cell Biological Aspects (ed. Tanenbaum, S. W.) 431–444 (Elsevier/North-Holland, Amsterdam, 1978).

    Google Scholar 

  8. Mimura, N. & Asano, A. Nature 272, 273–276 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Ishiura, M. & Okada, Y. J. Cell Biol. 80, 465–480 (1979).

    Article  CAS  Google Scholar 

  10. Miranda, A. F., Godman, G. C. & Tanenbaum, S. W. J. Cell Biol. 62, 406–423 (1974).

    Article  CAS  Google Scholar 

  11. Blikstad, I., Markey, F., Carlsson, L., Persson, T. & Lindberg, U. Cell 15, 935–943 (1978).

    Article  CAS  Google Scholar 

  12. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  13. Miranda, A. F., Godman, G. C., Deitch, A. D. & Tanenbaum, S. W. J. Cell Biol. 61, 481–500 (1974).

    Article  CAS  Google Scholar 

  14. Godman, G. C., Miranda, A. F., Deitch, A. D. & Tanenbaum, S. W. J. Cell Biol. 64, 644–667 (1975).

    Article  CAS  Google Scholar 

  15. Gordon, D. J., Boyer, J. L. & Korn, E. D. J. biol. Chem. 252, 8300–8309 (1977).

    CAS  Google Scholar 

  16. Carlsson, L., Nyström, L.-E., Sundkvist, I., Markey, F. & Lindberg, U. J. molec. Biol. 115, 465–483 (1977).

    Article  CAS  Google Scholar 

  17. Hartwig, J. H. & Stossel, T. P. J. molec. Biol. 134, 539–553 (1979).

    Article  CAS  Google Scholar 

  18. Lin, D. C. & Lin, S. Proc. natn. Acad. Sci. U.S.A. 76, 2345–2349 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Brenner, S. R. & Korn, E. D. J. biol. Chem. 254, 9982–9985 (1979).

    CAS  PubMed  Google Scholar 

  20. Brown, S. S. & Spudich, J. A. J. Cell Biol. 83, 657–662 (1979).

    Article  CAS  Google Scholar 

  21. Korn, E. D. Proc. natn. Acad. Sci. U.S.A. 75, 588–599 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Dancker, P. & Löw, I. Z. Naturforsch. 34 c, 555–557 (1979).

    Article  CAS  Google Scholar 

  23. Brenner, S. L. & Korn, E. D. J. biol. Chem. 255, 841–844 (1980).

    CAS  PubMed  Google Scholar 

  24. Tannenbaum, J. in Cytochalasins Biochemical and Biological Aspects (ed. Tanenbaum, S. W.) 521–559 (Elsevier/North-Holland, Amsterdam, 1978).

    Google Scholar 

  25. Godman, G. C. & Miranda, A. F. in Cytochalasins Biochemical and Biological Aspects (ed. Tanenbaum, S. W.) 277–429 (Elsevier/North-Holland, Amsterdam, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, A., Tannenbaum, J. Cytochalasin D does not produce net depolymerization of actin filaments in HEp-2 cells. Nature 287, 637–639 (1980). https://doi.org/10.1038/287637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287637a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing