Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of an unwound DNA duplex

Abstract

Certain dyes1,2 and drugs3,4 with planar aromatic components can intercalate these into stacks of base pairs and thereby bind tightly to DNA duplexes. Intercalation at one site usually precludes intercalation between the base pairs immediately adjacent5. This exclusion implies that two distinct nucleoside conformations are needed in the dinucleoside phosphates which include the intercalation site. The simplest distinction would involve no more than quantitative differences in the (usually anti) conformations at the glycosidic bonds6. This could be reinforced by additional, qualitative differences in the furanose ring puckerings (C-2′-endo and C-3′-endo)7. For the most pronounced difference there could be qualitative differences (syn and anti) in the conformations of the glycosidic bonds as well as in the conformations of the sugar rings. The model discussed here is an example of this most emphatic distinctiveness, as the nucleosides at the 5′ ends of the intercalation sites are C-3′-endo and syn and at the 3′ ends are C-2′-endo and anti. X-ray diffraction analysis suggests that a completely unwound allomorph of the DNA duplex can persist in oriented fibres when stabilized by certain platinum-containing intercalators. In the untwisting of (usually) right-handed DNA double helices, unwound duplexes are presumably fleeting intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lerman, L. S. J. molec. Biol. 3, 18–30 (1961).

    Article  CAS  Google Scholar 

  2. Lerman, L. S. Proc. natn. Acad. Sci. U.S.A. 49, 94–102 (1963).

    Article  ADS  CAS  Google Scholar 

  3. Waring, M. J. Biochim. biophys. Acta 87, 358–361 (1964).

    CAS  PubMed  Google Scholar 

  4. Bauer, W. & Vinograd, J. J. molec. Biol. 47, 419–435 (1970).

    Article  CAS  Google Scholar 

  5. Crothers, D. M. Biopolymers 6, 575–584 (1968).

    Article  CAS  Google Scholar 

  6. Shieh, H.-S., Herman, H. M., Dabrow, M. & Neidle, S. Nucleic Acids Res. 8, 85–97 (1980).

    Article  CAS  Google Scholar 

  7. Sobell, H. M., Tsai, C.-C., Jain, S. C. & Gilbert, S. G. J. molec. Biol. 114, 333–365 (1977).

    Article  CAS  Google Scholar 

  8. Alden, C. J. & Arnott, S. Nucleic Acids Res. 2, 1701–1717 (1975).

    Article  CAS  Google Scholar 

  9. Alden, C. J. & Arnott, S. Nucleic Acids Res. 4, 3855–3861 (1977).

    Article  CAS  Google Scholar 

  10. Bond, P. J., Langridge, R., Jennette, K. W. & Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 72, 4825–4829 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Lippard, S. J., Bond, P. J., Wu, K. C. & Bauer, W. R. Science 194, 726–728 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Drew, H. R., Dickerson, R. E. & Itakura, K. J. molec. Biol. 125, 535–543 (1978).

    Article  CAS  Google Scholar 

  13. Wang, A. H.-J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Arnott, S. Trans. Am. Crystallogr. 9, 31–56 (1973).

    CAS  Google Scholar 

  16. Smith, P. J. C. & Arnott, S. Acta crystallogr. A34, 3–11 (1978).

    Article  Google Scholar 

  17. Franklin, R. E. & Gosling, R. G. Acta crystallogr. 6, 673–677 (1953).

    Article  CAS  Google Scholar 

  18. Arnott, S. 1st Cleveland Symp. Macromolecules, 87–104 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  19. Leslie, A. G. W., Arnott, S., Chandrasekaran, R. & Ratliff, R. L. J. molec. Biol. (in the press).

  20. Patel, D. J., Canuel, L. L. & Pohl, F. M. Proc. natn. Acad. Sci. U.S.A. 76, 2508–2511 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnott, S., Bond, P. & Chandrasekaran, R. Visualization of an unwound DNA duplex. Nature 287, 561–563 (1980). https://doi.org/10.1038/287561a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287561a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing