Letter | Published:

In vitro suppression of UGA codons in a mitochondrial mRNA

Naturevolume 287pages361363 (1980) | Download Citation



Although both prokaryotic and eukaryotic messenger RNAs can be easily translated in heterologous protein-synthesizing systems, attempts to achieve correct synthesis of mitochondrial proteins by translation of mitochondrial mRN As in such systems have failed1–3. In general, the products of synthesis are of low molecular weight and presumably represent fragments of mitochondrial proteins1,2. These fragments display a strong tendency to aggregate4. Explanations have included the use by mitochondria of codons requiring a specialized tRNA population5 and the fortuitous occurrence within genes of purine-rich sequences resembling bacterial ribosome binding sites6. In addition, the long 5′-leader sequences present in many mitochondrial (mt) RNAs may also contribute to difficulties in mRNA recognition by heterologous ribosomes7. Recent sequence analysis of human mtDNA8 suggests that the genetic code used by mammalian mitochondria deviates in a number of respects from the ‘universal’ code, the most striking of these being the use of the UGA termination codon to specify tryptophan. That this may also apply in yeast mitochondria has been shown by Fox9 and Macino et al.10, thus providing an obvious and easily testable explanation for the inability of heterologous systems to synthesize full-length mitochondrial proteins. We confirm this explanation and describe here the in vitro synthesis of a full-length subunit II of yeast cytochrome c oxidase in a wheat-germ extract supplemented with a partially purified mitochondrial mRNA for this protein and a UGA-suppressor tRNA from Schizosaccharomyces pombe11.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Moorman, A. F. M., Verkley, F. M., Asselbergs, F. A. M. & Grivell, L. A. in Mitochondria 1977: Genetics and Biogenesis of Mitochondria (eds Bandlow, W., Schweyen, R. J., Wolf, K. & Kaudewitz, F.) 385–400 (De Gruyter, Berlin, 1977).

  2. 2

    Moorman, A. F. M., Van Ommen, G. J. B. & Grivell, L. A. Molec. gen. Genet. 160, 13–24 (1978).

  3. 3

    Chang, A. C. Y., Lansman, R. A., Clayton, D. A. & Cohen, S. N. Cell 6, 231–244 (1975).

  4. 4

    Moorman, A. F. M., Grivell, L. A., Lamie, F. & Smits, H. L. Biochim. biophys. Acta 518, 351–365 (1978).

  5. 5

    Borst, P. & Grivell, L. A. Cell 15, 705–723 (1978).

  6. 6

    Hensgens, L. A. M., Grivell, L. A., Borst, P. & Bos, J. L. Proc. natn. Acad. Sci. U.S.A. 76, 1663–1667 (1979).

  7. 7

    Van Ommen, G. J. B., Groot, G. S. P. & Grivell, L. A. Cell 18, 511–523 (1979).

  8. 8

    Barrell, B. G., Bankier, A. T. & Drouin, J. Nature 282, 189–194 (1979).

  9. 9

    Fox, T. D. Proc. natn. Acad. Sci. U.S.A. 76, 6534–6538 (1979).

  10. 10

    Macino, G., Coruzzi, G., Nobrega, F. G., Li, M. & Tzagoloff, A. Proc. natn. Acad. Sci. U.S.A. 76, 3784–3785 (1979).

  11. 11

    Kohli, J., Kwong, T., Altruda, F., Söll, D. & Wahl, G. J. biol. Chem. 254, 1546–1551 (1979).

  12. 12

    Cabral, F. et al. J. biol. Chem. 253, 297–304 (1978).

  13. 13

    Sevarino, K. A. & Poyton, R. O. Proc. natn. Acad. Sci. U.S.A. 77, 142–146 (1980).

  14. 14

    Steffens, G. J. & Buse, G., Hoppe-Seyler's, Z. physiol. chem. 360, 613–619 (1979).

  15. 15

    Groot, G. S. P., Van Harten-Loosbroek, N. & Kreike, J. Biochim. biophys. Acta 517, 457–463 (1978).

  16. 16

    Marcu, K. & Dudock, B. Nucleic. Acids Res. 1, 1385–1397 (1974).

  17. 17

    Maccecchini, M.-L., Rudin, Y., Blobel, G. & Schatz, G. Proc. natn. Acad. Sci. U.S.A. 76, 343–247 (1979).

  18. 18

    Laemmli, U. K. Nature 227, 680–685 (1970).

  19. 19

    Côté, C., Solioz, M. & Schatz, G. J. biol. Chem. 254, 1437–1439 (1979).

  20. 20

    Kreike, J. et al. Eur. J. Biochem. 101, 607–617 (1979).

  21. 21

    Chamberlain, J. P. Analyt. Biochem. 98, 132–135 (1979).

Download references

Author information


  1. Section for Molecular Biology, Laboratory of Biochemistry, University of Amsterdam, Kruislaan 320, 1098 SM, Amsterdam, The Netherlands

    • A. De Ronde
    • , A. P. G. M. Van Loon
    •  & L. A. Grivell
  2. Institut für Allgemeine Mikrobiologie, Altenbergrain 21, CH-3013, Bern, Switzerland

    • J. Kohli


  1. Search for A. De Ronde in:

  2. Search for A. P. G. M. Van Loon in:

  3. Search for L. A. Grivell in:

  4. Search for J. Kohli in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.