Letter | Published:

Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin

Naturevolume 287pages250251 (1980) | Download Citation



Archaebacteria have been defined as a ‘third primary kingdom’ of cells in addition to the urkaryotes and the eubacteria1. While the latter two correspond approximately to the conventional categories eukaryotes and prokaryotes respectively, the Archaebacteria have up to now comprised four groups of microorganisms: the methanogenic bacteria, the extremely halophilic bacteria and the two thermoacidophilic genera Sulfolobus and Thermoplasma. Based on ribosomal RNA sequence homologies and lipid composition, they apparently form a distinct group. Furthermore they possess or lack typical biochemical markers of both the eukaryotes and the prokaryotes, as well as having unique properties not found elsewhere2. Altogether, this indicates that they are not closer to either one of the classical categories. One clear-cut difference between prokaryotes and eukaryotes is the diphtheria toxin reaction, which catalyses the covalent binding of adenosine diphosphateribose (ADPR) to the eukaryotic peptide elongation factor EF2 in contrast to the homologous prokaryotic factor EF-G3,4. We report here that diphtheria toxin also catalyses the ADP-ribosylation of archaebacterial elongation factors. In this respect, these factors have to be assigned to the EF2 type; we suppose that the ADP-ribosylatable structure arising so early in evolution is of fundamental importance for the elongation process.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Woese, C. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 74, 5088–5090 (1977).

  2. 2

    Woese, C. R., Magrum, L. J. & Fox, G. E. J. molec. Evol. 11, 245–252 (1978).

  3. 3

    Collier, R. J. Bact. Rev. 39, 54–85 (1975).

  4. 4

    Gill, D. M. & Pappenheimer, A. M. J. biol. Chem. 246, 1492–1495 (1971).

  5. 5

    Laemmli, U. K. Nature 227, 680–685 (1970).

  6. 6

    Drazin, R., Kandel, J. & Collier, R. J. J. biol. Chem. 246, 1504–1510 (1971).

  7. 7

    Kaziro, Y., Inove-Yokosawa, N. & Kawakita, M. J. Biochem, 72, 853–863 (1972).

  8. 8

    Tsugawa, A., Ohsumi, Y. & Kato, I. J. Bact. 104, 152–157 (1970).

  9. 9

    Johnson, W. R., Kuchler, R. J. & Solotorovsky, M. J. Bact. 96, 1089–1098 (1968).

  10. 10

    Richter, D. & Lipmann, F. Biochemistry 9, 5065–5070 (1970).

  11. 11

    Bayley, S. T. & Griffith, E. Biochemistry 7, 2249–2256 (1968).

  12. 12

    Kessel, M. & Klink, F. in Energetics and Structure of Halophilic Microorganisms (eds Caplan, S. R. & Ginzburg M.) 453 (Elsevier, Amsterdam, 1978).

  13. 13

    Bodley, J. W., Van Ness, B. B., Brown, B. A. & Howard, J. B. Fedn Proc. 38, 2059 (1979).

  14. 14

    Robinson, E. A., Henrikson, O. Z. Maxwell, E. S. J. biol. Chem. 249, 5088–5093 (1974).

  15. 15

    Brown, B. & Bodley, J. W. FEBS Lett. 103, 253–255 (1979).

  16. 16

    Hamel, E., Koka, M. & Nakamoto, T. J. biol. Chem. 247, 805–814 (1972).

  17. 17

    Matheson, A. T., Yaguchi, M., Nazar, R. N., Visentin, L. P. & Willick, G. E. in Energetics and Structure of Halophilic Microorganisms (eds Caplan, S. R. & Ginzburg, M.) 481–501 (Elsevier, Amsterdam, 1978).

Download references

Author information


  1. Biochemisches Institut, Universität Kiel, Olshausenstrasse 40–60, D–2300, Kiel, 1, FRG

    • Michael Kessel
    •  & Friedrich Klink


  1. Search for Michael Kessel in:

  2. Search for Friedrich Klink in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.