Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin

Abstract

Archaebacteria have been defined as a ‘third primary kingdom’ of cells in addition to the urkaryotes and the eubacteria1. While the latter two correspond approximately to the conventional categories eukaryotes and prokaryotes respectively, the Archaebacteria have up to now comprised four groups of microorganisms: the methanogenic bacteria, the extremely halophilic bacteria and the two thermoacidophilic genera Sulfolobus and Thermoplasma. Based on ribosomal RNA sequence homologies and lipid composition, they apparently form a distinct group. Furthermore they possess or lack typical biochemical markers of both the eukaryotes and the prokaryotes, as well as having unique properties not found elsewhere2. Altogether, this indicates that they are not closer to either one of the classical categories. One clear-cut difference between prokaryotes and eukaryotes is the diphtheria toxin reaction, which catalyses the covalent binding of adenosine diphosphateribose (ADPR) to the eukaryotic peptide elongation factor EF2 in contrast to the homologous prokaryotic factor EF-G3,4. We report here that diphtheria toxin also catalyses the ADP-ribosylation of archaebacterial elongation factors. In this respect, these factors have to be assigned to the EF2 type; we suppose that the ADP-ribosylatable structure arising so early in evolution is of fundamental importance for the elongation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 74, 5088–5090 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Woese, C. R., Magrum, L. J. & Fox, G. E. J. molec. Evol. 11, 245–252 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Collier, R. J. Bact. Rev. 39, 54–85 (1975).

    CAS  Google Scholar 

  4. Gill, D. M. & Pappenheimer, A. M. J. biol. Chem. 246, 1492–1495 (1971).

    CAS  PubMed  Google Scholar 

  5. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Drazin, R., Kandel, J. & Collier, R. J. J. biol. Chem. 246, 1504–1510 (1971).

    CAS  PubMed  Google Scholar 

  7. Kaziro, Y., Inove-Yokosawa, N. & Kawakita, M. J. Biochem, 72, 853–863 (1972).

    Article  CAS  Google Scholar 

  8. Tsugawa, A., Ohsumi, Y. & Kato, I. J. Bact. 104, 152–157 (1970).

    CAS  PubMed  Google Scholar 

  9. Johnson, W. R., Kuchler, R. J. & Solotorovsky, M. J. Bact. 96, 1089–1098 (1968).

    CAS  PubMed  Google Scholar 

  10. Richter, D. & Lipmann, F. Biochemistry 9, 5065–5070 (1970).

    Article  CAS  Google Scholar 

  11. Bayley, S. T. & Griffith, E. Biochemistry 7, 2249–2256 (1968).

    Article  CAS  Google Scholar 

  12. Kessel, M. & Klink, F. in Energetics and Structure of Halophilic Microorganisms (eds Caplan, S. R. & Ginzburg M.) 453 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  13. Bodley, J. W., Van Ness, B. B., Brown, B. A. & Howard, J. B. Fedn Proc. 38, 2059 (1979).

    Google Scholar 

  14. Robinson, E. A., Henrikson, O. Z. Maxwell, E. S. J. biol. Chem. 249, 5088–5093 (1974).

    CAS  PubMed  Google Scholar 

  15. Brown, B. & Bodley, J. W. FEBS Lett. 103, 253–255 (1979).

    Article  CAS  Google Scholar 

  16. Hamel, E., Koka, M. & Nakamoto, T. J. biol. Chem. 247, 805–814 (1972).

    CAS  Google Scholar 

  17. Matheson, A. T., Yaguchi, M., Nazar, R. N., Visentin, L. P. & Willick, G. E. in Energetics and Structure of Halophilic Microorganisms (eds Caplan, S. R. & Ginzburg, M.) 481–501 (Elsevier, Amsterdam, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessel, M., Klink, F. Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature 287, 250–251 (1980). https://doi.org/10.1038/287250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287250a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing