Letter | Published:

Identification of the lethal target of benzylpenicillin in Streptococcus faecalis by in vivo penicillin binding studies

Naturevolume 287pages7072 (1980) | Download Citation

Subjects

Abstract

The mode of bacterial killing by penicillins is still unknown in spite of many studies on the subject. The recent finding of multiple penicillin binding proteins (PBPs) in sensitive bacteria and the possibility of analysing the binding of the antibiotic to exponentially growing cells have provided new directions for investigating this problem1–3. Sensitivity to lethal and other effects of penicillin varies very significantly with the conditions of growth of the cells. If PBPs were the penicillin target, changes in conditions of growth causing variations in penicillin sensitivity should be accompanied by changes in these proteins. Furthermore, if one of PBPs could be identified as the killing target, it could possibly be demonstrated to show changes in cells growing in different conditions. We show here that in Streptococcus faecalis ATCC 9790 changes in conditions of growth are accompanied by changes in PBPs. Furthermore, in the presence of the minimal dose of 14C-benzylpenicillin causing complete inhibition of cell growth, 100% of the total radioactivity is bound to a single protein (PBP 3).

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Blumberg, P. M. & Strominger, J. L. Bact. Rev. 38, 291–335 (1974).

  2. 2

    Spratt, B. G. Proc. natn. Acad. Sci. U.S.A. 72, 2999–3003 (1975); Nature 274, 713–715 (1978).

  3. 3

    Reynolds, P. E., Shepherd, S. T. & Chase, H. A. Nature 271, 568–570 (1978).

  4. 4

    Shockman, G. D. in Analytical Microbiology (ed. Kavanagh, F.) 567 (Academic, New York, 1962).

  5. 5

    Coyette, J., Ghuysen, J. M. & Fontana, R. Eur. J. Biochem. 88, 297–305 (1978).

  6. 6

    Giles, A. F. & Reynolds, P. E. Nature 280, 167–168 (1979).

  7. 7

    Satta, G., Canepari, P., Botta, G. & Fontanna, R. J. Bact. 142 (1980).

  8. 8

    Wise, E. M. & Park, J. T. Proc. natn. Acad. Sci. U.S.A. 54, 75–81 (1965).

  9. 9

    Tipper, D. J. & Strominger, J. L. Proc. natn. Acad. Sci. U.S.A. 54, 1133–1141 (1965).

  10. 10

    Hammes, W. P. Eur. J. Biochem. 70, 107–113 (1976).

  11. 11

    Tomasz, A. & Waks, S. Proc. natn. Acad. Sci. U.S.A. 72, 4162–4166 (1975).

  12. 12

    Fontana, R., Satta, G. & Romanzi, C. A. Antimicrob. Ag. Chemother. 12, 745–747 (1977).

  13. 13

    Laemli, U. K. & Favre, M. J. molec. Biol. 80, 575–599 (1973).

  14. 14

    Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

Download references

Author information

Affiliations

  1. Istituto de Microbiologia, Università di Padova, Padova, Italy

    • R. Fontana
  2. Istituto di Microbiologia, Università di Genova, Genova, Italy

    • P. Canepari
    •  & G. Satta
  3. Service de Microbiologie, Faculté de Médecine, Université de Liège, Liège, Belgium

    • J. Coyette

Authors

  1. Search for R. Fontana in:

  2. Search for P. Canepari in:

  3. Search for G. Satta in:

  4. Search for J. Coyette in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/287070a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.