Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC?

Abstract

Electroanalytical techniques for the in vivo measurement of neurotransmitters in brain tissue have been applied especially to the catecholamines, which are easily oxidizable1–6. Measurements are, however, complicated by the presence of ascorbic acid (AA) in brain tissue1,3–6. Lane et al.7 have been able to circumvent this problem, at least in part, by the application of differential pulse voltametry (DPV) to a surface-modified platinum electrode, obtaining distinct oxidation current peaks in recordings from the rat neostriatum which are attributed to AA and to dopamine (DA), respectively, but which are also unstable. We have recently described a new type of electrode2,8, consisting of a pyrolytic carbon fibre 8 µm thick and 0.5 mm long. We now report that the DPV method used in conjunction with an electrochemical treatment of this electrode yields stable and reproducible peaks in which catecholamines and AA are resolved from each other. Moreover, pharmacological investigations suggest that the catecholamine peak measured in vivo in the rat neostriatum should be attributed to 3, 4-dihydroxy-phenylacetic acid (DOPAC), suggesting that our technique may be a useful means of following dopaminergic activity in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, R. N. Analyt. Chem. 48, 1126A–1137A (1976).

    Article  CAS  Google Scholar 

  2. Gonon, F. et al. C. r. hebd. Séanc. Acad. Sci., Paris 286D, 1203–1206 (1978).

    CAS  Google Scholar 

  3. Lane, R. F., Hubbard, A. T. & Blaha, C. D. Bioelectrochem. Bioenergetics 5, 506–527 (1978).

    Article  Google Scholar 

  4. Conti, J. C., Strope, E., Adams, R. N. & Marsden, C. A. Life Sci. 23, 2705–2716 (1978).

    Article  CAS  Google Scholar 

  5. Lane, R. F., Hubbazrd, A. T. & Blaha, C. D. J. electroanalyt. Chem. 95, 117–122 (1979).

    Article  CAS  Google Scholar 

  6. Huff, R., Adams, R. N. & Rutledge, C. O. Brain Res. 173, 369–372 (1979).

    Article  CAS  Google Scholar 

  7. Lane, R. F., Hubbard, A. T., Fukunaga, K. & Blanchard, R. J. Brain Res. 114, 346–352 (1976).

    Article  CAS  Google Scholar 

  8. Ponchon, J. L., Cespuglio, R., Gonon, F., Jouvet, M. & Pujol, J. L. Analyt. Chem. 51, 1483–1486 (1979).

    Article  CAS  Google Scholar 

  9. Buda, M., Gonon, F., Cespuglio, R., Jouvet, M. & Pujol, J. F. C.r. hebd. Séanc. Acad. Sci., Paris 290D, 431–434 (1980).

    CAS  Google Scholar 

  10. Moore, K. E. & Kelly, P. H. in Psychopharmacology: A generation of Progress (eds Lipton, M. A., Dimascio, A. & Killam, K. F.) 221–234 (Raven, New York, 1978).

    Google Scholar 

  11. Brownstein, M., Saavedra, J. M. & Palkovits, M. Brain Res. 79, 431–436 (1974).

    Article  CAS  Google Scholar 

  12. Wightman, R. M., Steope, E., Plotsky, P. & Adams, R. N. Brain Res. 159, 55–68 (1978).

    Article  CAS  Google Scholar 

  13. Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M. & Atack, C. V. Naunyn, Schmiedebergs Archs Pharmak 275, 153–168 (1972).

    Article  CAS  Google Scholar 

  14. Roth, R. H., Murrin, L. C. & Walters, J. R. Eur. J. Pharmac. 36, 163–171 (1976).

    Article  CAS  Google Scholar 

  15. Karoum, F., Neff, N. H. & Wyatt, R. J. Eur. J. Pharmac. 44, 311–318 (1977).

    Article  CAS  Google Scholar 

  16. Fadda, F., Argiolas, A., Stefanini, E. & Gessa, G. L. Life Sci. 21, 411–418 (1977).

    Article  CAS  Google Scholar 

  17. Wilk, S., Watson, E. & Travis, B. Eur. J. Pharmac. 30, 238–243 (1975).

    Article  CAS  Google Scholar 

  18. Westernik, B. H. C., Lejeune, B., Korf, J. & Van Praag, H. M. Eur. J. Pharmac. 42, 179–190 (1977).

    Article  Google Scholar 

  19. Nieoullon, A., Cheramy, A. & Glowinski, J. J. NeuroChem. 28, 819–828 (1977).

    Article  CAS  Google Scholar 

  20. Cragg, B. Trends Neurosci. 2, 159–161 (1979).

    Article  Google Scholar 

  21. Tassin, J. P., Cheramy, A., Blanc, G., Thierry, A. M. & Glowinski, J. Brain Res. 107, 291–301 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonon, F., Buda, M., Cespuglio, R. et al. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC?. Nature 286, 902–904 (1980). https://doi.org/10.1038/286902a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286902a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing