Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectrin tetramer–dimer equilibrium and the stability of erythrocyte membrane skeletons

Abstract

The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1–4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1–4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5–8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer–tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yu, J., Fischman, D. A. & Steck, T. L. J. supramolec. Struct. 1, 233–248 (1973).

    Article  CAS  Google Scholar 

  2. Lux, S. E., Job, K. M. & Karnovsky, M. J. J. clin. Invest. 58, 955–963 (1976).

    Article  CAS  Google Scholar 

  3. Sheetz, M. P. & Sawyer, D. J. supramolec. Struct. 8, 399–412 (1978).

    Article  CAS  Google Scholar 

  4. Liu, S. C. & Palek, J. in Erythrocyte Mechanics and Blood Flow (eds Cokelet. G. R. et al.) 15–29 (Liss, New York, 1980).

    Google Scholar 

  5. Ralston, G. B. Aust, J. biol. Sci. 28, 259–266 (1975).

    Article  CAS  Google Scholar 

  6. Kam, Z., Josephs, R., Eisenberg, H. & Gratzer, W. B. Biochemistry 16, 5568–5572 (1977).

    Article  CAS  Google Scholar 

  7. Ralston, G. B., Dunbar, J. & White, M. Biochim. biophys. Acta 491, 345–348 (1977).

    Article  CAS  Google Scholar 

  8. Ungewickell, E. & Gratzer, W. Eur. J. Biochem. 88, 379–385 (1978).

    Article  CAS  Google Scholar 

  9. Shotton, D., Burke, B. & Branton, D. Biochim. biophys. Acta 536, 313–317 (1978).

    Article  CAS  Google Scholar 

  10. Lux, S. E. Semin. Hemat. 16, 21–51 (1979).

    CAS  PubMed  Google Scholar 

  11. Dunbar, J. C. & Ralston, G. B. Biochim. biophys. Acta 510, 283–291 (1978).

    Article  CAS  Google Scholar 

  12. Brenner, S. L. & Korn, E. D. J. biol. Chem. 254, 8620–8627 (1979).

    CAS  PubMed  Google Scholar 

  13. Cohen, C. M. J. Cell Biol. 83, 308a (1979).

    Article  Google Scholar 

  14. Ungewickell, E., Bennett, P. M., Calvert, R., Ohanian, V. & Gratzer, W. B. Nature 280, 811–814 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Sheetz, M. P. J. Cell Biol. 81, 266–270 (1979).

    Article  CAS  Google Scholar 

  16. Pinder, J. C., Bray, D. & Gratzer, W. B. Nature 270, 752–754 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Palek, J. & Liu, S. C. Semin. Hemat. 16, 75–93 (1979).

    CAS  PubMed  Google Scholar 

  18. Palek, J. & Liu, S. C. in Immunobiology of the Erythrocyte (eds Sandier, S. G. et al.) 21–44 (Liss, New York, 1980).

    Google Scholar 

  19. Bennett, V. & Stenbuck, P. J. J. biol. Chem. 254, 2533–2541 (1979).

    CAS  PubMed  Google Scholar 

  20. Luna, E., Kidd, G. K. & Branton, D. J. biol. Chem. 254, 2526–2532 (1979).

    CAS  PubMed  Google Scholar 

  21. Yu, J. & Goodman, S. R. Proc. natn, Acad. Sci. U.S.A. 76, 2340–2344 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Bennett, V. & Stenbuck, P. J. Nature 280, 468–473 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Marinetti, G. V. & Crain, R. C. J. supramolec. Struct. 8, 191–213 (1978).

    Article  CAS  Google Scholar 

  24. Cohen, C. M. & Branton, D. Nature 279, 163–165 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Liu, S. C. & Palek, J. J. supramolec. Struct. 10, 97–109 (1979).

    Article  CAS  Google Scholar 

  26. Elgsaeter, A. & Branton, D. J. Cell Biol. 63, 1018–1036 (1974).

    Article  CAS  Google Scholar 

  27. Peters, R., Peters, J., Tews, K. H. & Bahr, W. Biochim. biophys. Acta 367, 282–294 (1974).

    Article  CAS  Google Scholar 

  28. Fowler, V. & Branton, D. Nature 268, 23–26 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G. & Parish, G. R. Nature 263, 389–393 (1976).

    Article  ADS  CAS  Google Scholar 

  30. Nicolson, G. I. & Painter, R. G. J. Cell Biol. 59, 395–406 (1973).

    Article  CAS  Google Scholar 

  31. Fairbanks, G., Steck, T. L. & Wallach, D. F. H. Biochemistry 10, 2606–2616 (1971).

    Article  CAS  Google Scholar 

  32. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SC., Palek, J. Spectrin tetramer–dimer equilibrium and the stability of erythrocyte membrane skeletons. Nature 285, 586–588 (1980). https://doi.org/10.1038/285586a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285586a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing