Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of methylated xanthines on mammalian cells treated with bifunctional alkylating agents

Abstract

Caffeine has been previously reported to enhance the lethal potential of many DNA-damaging agents in rodent cells1–5. This effect has most commonly been ascribed to the binding of caffeine to single-stranded DNA6, and the resulting inhibition of post-replication repair7–10, which is associated with the synthesis of abnormally small nascent DNA fragments7,11–13. However, certain aspects of this theory remain unclear: (1) why does the addition of caffeine to damaged cells elevate the level of DNA synthesis when it supposedly blocks post-replication repair10,14, and (2) as pointed out by Cleaver15, why does caffeine continue to exert its synergistic lethal effects until completion of the S phase16,17, even though the size of newly synthesized DNA seems normal much earlier18–20? The present studies with nitrogen mustard (HN2) fail to demonstrate any effect of non-lethal concentrations of methylated xanthines (MXs) on removal of DNA damage or post-replication repair in conditions producing synergistic lethal effects. We demonstrate an influence by MXs on initiation of DNA synthesis in damaged replicons, and propose that this effect is primarily responsible for the synergistic lethal properties of these drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rauth, A. M. Radiat. Res. 31, 121–138 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Rauth, A. M., Barton, C. & Lee, C. P. Y. Cancer Res. 30, 2724–2729 (1970).

    CAS  PubMed  Google Scholar 

  3. Walker, I. G. & Reid, B. D. Mutat. Res. 12, 101–104 (1971).

    Article  CAS  Google Scholar 

  4. Roberts, J. J., Sturrock, J. E. & Ward, K. N. Mutat. Res. 26, 129–143 (1974).

    Article  CAS  Google Scholar 

  5. Busse, P. M., Bose, S. K., Jones, R. W. & Tolmach, L. J. Radiat. Res. 71, 666–677 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Ts'o, P. O. P. & Lu, P. Proc. natn. Acad. Sci. U.S.A. 51, 17–24 (1964).

    Article  ADS  CAS  Google Scholar 

  7. Cleaver, J. E. & Thomas, G. H. Biochem. biophys. Res. Commun. 36, 203–208 (1969).

    Article  CAS  Google Scholar 

  8. Fujiwara, Y. Expl Cell Res. 75, 483–489 (1972).

    Article  CAS  Google Scholar 

  9. Buhl, S. N. & Regan, J. D. Biophys. J. 14, 519–527 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Lehmann, A. R. & Kirk-Bell, S. Mutat. Res. 26, 73–82 (1974).

    Article  CAS  Google Scholar 

  11. Rupp, W. D. et al. Brookhaven natn. Lab. Publ. No. 50203, 1–11 (1969).

  12. Lehmann, A. R. J. molec. Biol. 66, 319–337 (1972).

    Article  CAS  Google Scholar 

  13. Buhl, S. N., Setlow, R. B. & Regan, J. D. Int. J. Radiat. Biol. 22, 417–424 (1972).

    CAS  Google Scholar 

  14. Van Den Berg, H. W. & Roberts, J. J. Chemico-Biol. Interact. 12, 375–390 (1976).

    Article  CAS  Google Scholar 

  15. Cleaver, J. E. Biochim. biophys. Acta 516, 489–516 (1978).

    CAS  Google Scholar 

  16. Roberts, J. J. & Ward, K. N. Chemico-Biol. Interact. 7, 241–264 (1973).

    Article  CAS  Google Scholar 

  17. Domon, J. & Rauth, A. M. Radiat. Res. 39, 207–214 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Meyn, R. E. & Humphrey, R. M. Biophys. J. 11, 295–301 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Lehmann, A. R. Eur. J. Biochem. 31, 438–445 (1972).

    Article  CAS  Google Scholar 

  20. Buhl, S. N., Setlow, R. B. & Regan, J. D. Biophys. J. 13, 1265–1275 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Wilkinson, R., Kiefer, J. & Nias, A. H. W. Mutat. Res. 10, 67–72 (1970).

    Article  CAS  Google Scholar 

  22. Maher, V. M., Ouellette, L. M., Mittlestat, M. & McCormick, J. J. Nature 258, 760–763 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Schroy, C. B. & Todd, P. Mutat. Res. 33, 347–355 (1975).

    Article  CAS  Google Scholar 

  24. Busse, P. M., Bose, S. K., Jones, R. W. & Tolmach, L. J. Radiat. Res. 76, 292–307 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Fogh, J. & Trempe, G. in Human Tumor Cells In-Vitro (ed. Fogh, J.) 115–174 (Plenum, New York, 1975).

    Google Scholar 

  26. Lawley, P. D. Prog. Nucleic Acid Res. 5, 89–131 (1966).

    Article  CAS  Google Scholar 

  27. Kohn, K. W., Erickson, L. C., Ewig, R. A. G. & Friedman, C. A. Biochemistry 15, 4629–4637 (1976).

    Article  CAS  Google Scholar 

  28. Ewig, A. G. & Kohn, K. W. Cancer Res. 37, 2114–2122 (1977).

    CAS  PubMed  Google Scholar 

  29. Fornace, A. J. Jr, Little, J. B. & Weischselbaum, R. R. Biochim. biophys. Acta 561, 99–109 (1979).

    Article  CAS  Google Scholar 

  30. Kohn, K. W., Erickson, L. C., Ewig, R. A. G. & Iqbal, Z. M. Biochemistry 13, 4134–4139 (1974).

    Article  CAS  Google Scholar 

  31. Makino, F. & Okada, S. Mutat. Res. 23, 387–394 (1974).

    Article  CAS  Google Scholar 

  32. Tolmach, L. J., Jones, R. W. & Busse, P. M. Radiat. Res. 71, 653–665 (1977).

    Article  ADS  CAS  Google Scholar 

  33. Painter, R. B. & Young, B. R. Radiat. Res. 64, 648–656 (1975).

    Article  ADS  CAS  Google Scholar 

  34. Walters, R. A. & Hildebrand, C. E. Biochem. biophys. Res. Commun. 65, 265–271 (1975).

    Article  CAS  Google Scholar 

  35. Povirk, L. F. J. molec. Biol. 114, 141–151 (1977).

    Article  CAS  Google Scholar 

  36. Painter, R. B. Mutat. Res. 42, 299–304 (1977).

    Article  CAS  Google Scholar 

  37. Lehmann, A. R. Biophys. J. 12, 1316–1325 (1972).

    Article  ADS  CAS  Google Scholar 

  38. Ehmann, U. K., Gehring, U. & Tomkins, G. M. Biochim. biophys. Acta 447, 133–138 (1976).

    Article  CAS  Google Scholar 

  39. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. Cold Spring Harb. Symp. quant. Biol. 38, 205–223 (1973).

    Article  Google Scholar 

  40. Konze-Thomas, B., Levinson, J. W., Maher, M. & McCormick, J. J. Biophys. J. 28, 315–325 (1979).

    Article  CAS  Google Scholar 

  41. Fraval, H. N. A. & Roberts, J. J. Cancer Res. 39, 1793–1797 (1979).

    CAS  PubMed  Google Scholar 

  42. Hagan, M. P. & Elkind, M. M. Biophys. J. 27, 75–85 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murnane, J., Byfield, J., Ward, J. et al. Effects of methylated xanthines on mammalian cells treated with bifunctional alkylating agents. Nature 285, 326–329 (1980). https://doi.org/10.1038/285326a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285326a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing