Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of leaf age and plant life history patterns on herbivory

Abstract

Current theories on plant–herbivore interactions suggest that plant species of different successional status and leaves of various ages differ in their degree of ephemerality and predictability to herbivores, and will therefore exhibit different anti-herbivore characteristics1–6. Old leaves and leaves of mature forest plants are expected to be better defended than ephemeral young leaves and leaves of early successional plants. These predicted patterns of plant defence and the resultant patterns of insect grazing are not well documented for natural communities. Field studies have shown that mammalian herbivores in a tropical forest prefer young leaves7 and that insect grazing in a temperate forest is heaviest on the young leaves8. Laboratory studies have shown that late successional species9,12 or plants with certain chemical defences13–17 are less palatable for generalist herbivores. Laboratory results depend, however, on the particular herbivore tested, and may not accurately predict rates of herbivory in natural systems. Here I report on rates of herbivory on young and mature leaves from tree species with different life history patterns. Grazing rates (% leaf area eaten per day) on mature leaves of fast growing, shade-intolerant species (pioneers) were an order of magnitude greater than those on slow growing, shade-tolerant species (persistents). Young leaves in both groups of species suffered significantly greater grazing damage than mature leaves.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gates, R. G. & Rhoades, D. F. Biochem. Syst. Ecol 5, 185–193 (1977).

    Article  Google Scholar 

  2. 2

    Feeny, P. P. in Coevolution of Animals and Plants (eds Gilbert, L. E. & Raven, P. H.) 3–19 (University of Texas Press, Austin, 1975); in Biochemical Interaction Between Plants and Insects (eds Wallace, J. W. & Mansell, R. L.) 1–40 (Plenum, New York, 1976).

    Google Scholar 

  3. 3

    Rhoades, D. F. & Gates, R. G. in Biochemical Interaction Between Plants and Insects (eds Wallace, J. W. & Mansell, R. L.) 168–213 (Plenum, New York, 1976).

    Book  Google Scholar 

  4. 4

    Rhoades, D. F. in Herbivores: Their Interrelationships with Plant Secondary Constituents (eds Rosenthal, G. A. & Janzen, D. H.) 3–54 (Academic, New York, 1979).

    Google Scholar 

  5. 5

    Feeny, P. P. Ecology 51, 565–581 (1970).

    Article  Google Scholar 

  6. 6

    Dement, W. A. & Mooney, H. A. Oecologia 15, 65–76 (1974).

    ADS  Article  Google Scholar 

  7. 7

    Milton, K. Am. Nat. 114, 362–378 (1979).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Reichle, D. E., Goldstein, R. A., Van Hook, R. I. & Dodson, G. J. Ecology 54, 1076–1084 (1973).

    Article  Google Scholar 

  9. 9

    Gates, R. G. & Orians, G. H. Ecology 56, 410–418 (1975).

    Article  Google Scholar 

  10. 10

    Freeland, W. J. & Winter, J. W. J. chem. Ecol. 1, 439–455 (1975).

    Article  Google Scholar 

  11. 11

    Grime, J. P., MacPherson-Stewart, S. F. & Dearman, R. S. J. Ecol. 56, 405–420 (1968).

    Article  Google Scholar 

  12. 12

    Otte, D. Oecologia 18, 129–144 (1975).

    ADS  Article  Google Scholar 

  13. 13

    Bernays, E. A. & Chapman, R. F. Ecol. Ent. 2, 1–18 (1977).

    Article  Google Scholar 

  14. 14

    Cooper-Driver, G. A. & Swain, T. Nature 260, 604 (1976).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gates, R. G. Ecology 56, 391–400 (1975).

    Article  Google Scholar 

  16. 16

    Feeny, P. P. J. Insect Phys. 14, 805–817 (1968).

    CAS  Article  Google Scholar 

  17. 17

    Jones, D. A. in Phytochemical Ecology (ed. Harborne, J. B.) 103–124 (Academic, New York, 1972).

    Google Scholar 

  18. 18

    Hartshorn, G. S. in Tropical Trees as Living Systems (eds Tomlinson, P. B. & Zimmerman, M. H.) 617–638 (Cambridge University Press, Cambridge, Mass. 1978).

    Google Scholar 

  19. 19

    Aubreville, A. in World Vegetation Types (ed. Eyre, S. R.) 41–55 (Columbia University Press, New York, 1971).

    Google Scholar 

  20. 20

    Whitmore, T. C. Tropical Rain Forests of the Far East (Clarendon, Oxford, 1975); in Tropical Trees as Living Systems (eds Tomlinson, P. B. & Zimmerman, M. H.) 639–655 (Cambridge University Press, 1978).

    Google Scholar 

  21. 21

    Bray, J. R. Ecology 37, 598–600 (1956).

    Article  Google Scholar 

  22. 22

    Schulz, J. P. Verh. K. Ned. Akad. Wet. Afd. natuurkd Tweed. Reeks. 53, 1–367 (1960).

    Google Scholar 

  23. 23

    van Steenis, C. G. G. J. Proc. Kandy Symp. on Study of Trop. Veg. 159–163 (UNESCO, Paris, 1956).

  24. 24

    McKey, D. Science 202, 61–64 (1978).

    ADS  Google Scholar 

  25. 25

    Oates, J. F., Swain, T. & Zantovska, J. Biochem. Syst. Ecol. 5, 317–321 (1977).

    CAS  Article  Google Scholar 

  26. 26

    Dixon, A. F. G. in Animal Populations in Relation to Their Food Resources (ed. Watson, A.) 271–287 (Br. Ecol. Soc., London 1970).

    Google Scholar 

  27. 27

    Oelberg, K. J. Range Mgmt 9, 220–225 (1956).

    Article  Google Scholar 

  28. 28

    Rhoades, D. F. Biochem. Syst. Ecol. 5, 281–290 (1977); in The Biology and Chemistry of the Creosotebush in New World Deserts (eds Mabry, T. J., Hunziker, J. & DiFeo, D. R.) 135–175 (Dowden, Hutchinson and Ross, Stroudsburg, 1977).

    Google Scholar 

  29. 29

    Janzen, D. H. Ecology 52, 964–979 (1971).

    Article  Google Scholar 

  30. 30

    McKey, D. Am. Nat. 108, 305–320 (1974).

    ADS  Article  Google Scholar 

  31. 31

    Knight, D. H. Ecol. Monogr. 45, 259–284 (1975).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coley, P. Effects of leaf age and plant life history patterns on herbivory. Nature 284, 545–546 (1980). https://doi.org/10.1038/284545a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing