Letter | Published:

Axons from CNS neurones regenerate into PNS grafts

Abstract

Axons in the peripheral nervous system (PNS) and central nervous system (CNS) form sprouts after injury1–3. Elongation of regenerating axonal sprouts has been observed as the exception within the adult mammalian CNS but is the rule in the PNS of mammals as well as in the CNS of some fish and amphibians4. The relative importance of intrinsic neuronal properties and axonal environment in determining the extent of axonal regrowth is unknown5. Neuroglial cells, nerve growth factor and target tissues such as smooth muscle are known to influence neuronal responses to injury6,7. Here we have examined the capacity of transected axons originating in the CNS to regrow into nerve grafts containing Schwann cells.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ramon Y Cajal, S. Degeneration and Regeneration of the Nervous System (ed. May, R. M.) (Oxford University Press, London, 1928).

  2. 2

    Liu, C. N. & Chambers, W. W. Archs Neurol. Psychiat. 79, 46–61 (1958).

  3. 3

    Raisman, G. Ann. Neurol. 3, 101–106 (1978).

  4. 4

    Singer, M., Nordlander, R. H. & Egar, M. J. comp. Neurol. 185, 1–22 (1979).

  5. 5

    Grafstein, B. & McQuarrie, I. G. in Neuronal Plasticity (ed. Cotman, C. W.) (Raven, New York, 1978).

  6. 6

    Stenevi, U., Bjerre, B., Bjorklund, A. & Mobley, W. Brain Res. 69, 217–234 (1974).

  7. 7

    Varon, S. S. & Bunge, R. P. A. Rev. Neurosci 1, 327–361 (1978).

  8. 8

    Sugar, O. & Gerard, R. W. J. Neurophysiol. 3, 1–19 (1940).

  9. 9

    Kao, C. C., Chang, L. W. & Bloodworth, J. M. B. Expl Neurol. 54, 591–615 (1977).

  10. 10

    Aguayo, A. J. et al. Neurosci. Lett. 9, 97–104 (1978).

  11. 11

    Berthold, C. H. & Carlstedt, T. Acta physiol. scand. suppl. 446, 23–42 (1977).

  12. 12

    Bratten, B. & Hudson, A. Can. J. neurol. Sci. 6, 394–395 (1979).

  13. 13

    Rexed, B. J. comp. Neurol. 100, 297–379 (1954).

  14. 14

    Adams, J. H., Daniel, P. M. & Prichard, M. M. L. J. comp. Neurol. 135, 121–144 (1969).

  15. 15

    Katzman, R., Broida, R. & Raine, C. S. Brain Res. 138, 423–443 (1977).

  16. 16

    Svendgaard, N. A., Bjorklund, A. & Stenevi, U. Adv. Anat. Embryol. cell. Biol. 51, pt 4, 7–77 (1975).

  17. 17

    Svendgaard, N. A., Bjorklund, A. & Stenevi, U. Brain Res. 102, 1–22 (1976).

  18. 18

    Hancock, M. B. & Peveto, C. A. J. comp. Neurol. 183, 65–72 (1979).

  19. 19

    Carlsson, A., Falck, B. & Hillarp, N. A. Acta physiol. scand. 60, 112–119 (1964).

  20. 20

    Lampert, P. & Cressman, M. Lab. Invest. 13, 825–839 (1964).

  21. 21

    Weinberg, E. L. & Spencer, P. S. Brain Res. 162, 273–279 (1979).

  22. 22

    Stensaas, L. J., Burgess, P. R. & Horch, K. W. Soc. Neurosci. Abstr. 5, 684 (1979).

  23. 23

    Aguayo, A. J., Bray, G. M., Perkins, C. S. & Duncan, I. D. in Soc. Neurosci. Symp. IV (ed. J. A. Ferrendelli) 361–383 (1979).

  24. 24

    Mesulam, M. M. J. Histochem. Cytochem. 24, 1273–1280 (1978).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.