Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Saccadic suppression by corollary discharge in the locust

Abstract

DURING rapid eye movements, saccades, human subjects do not perceive movement of their visual surroundings, and their sensitivity to light flashes and moving objects is reduced. This phenomenon is known as saccadic suppression. The physiological basis of this suppression is not well understood. The necessity for a mechanism which allows discrimination between retinal image movement generated by the object and that generated by the subject was recognised by Helmholtz1. Sperry2 proposed that along with the eye movement, the central nervous system generates a ‘corollary discharge’ into the visual centres that compensates for displacement of the retinal image, and von Hoist and Mittelstaedt3 independently postulated a similar ‘efference copy’ mechanism. Functionally significant efferent control has been demonstrated in several non-visual sensory pathways4,5. Such a mechanism could account for experimentally produced effects in human subjects6,7. The prevailing view8–12, however, is that saccadic suppression in higher mammals is caused not by corollary discharge but instead by inhibition derived from the retinal image motion generated by eye movement. This view has been extended to include saccadic suppression of the visual movement detector system in crickets and locusts13–15, in which the neural circuit performing the inhibitory function has been identified15,16. The experiments leading to this conclusion have all used passive movement of the animal with respect to the visual environment, or the reverse, and not true saccades. We have now investigated the effects of head movements by the locust on its visual responses, and report that movement detector neurones are strongly inhibited during the fast phase of optokinetic nystagmus and during voluntary sac-cades by a central nervous mechanism of the corollary discharge type. The effect of the inhibitory mechanisms of retinal origin are negligible by comparison.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Helmholtz, H. von Physiological Optics Vol. III (ed. Southall, J. P. C.) (Optical Society of America, Menasha, Wisconsin, 1925).

    MATH  Google Scholar 

  2. Sperry, R. W. J. comp. Physiol. Psych. 43, 482–489 (1950).

    Article  CAS  Google Scholar 

  3. von Holst, E. & Mittelstaedt, H. Naturwissenschaften 37, 464–476 (1950).

    Article  ADS  Google Scholar 

  4. Kuffler, S. W., Hunt, C. C. & Quilliam, J. P. J. Neurophysiol. 14, 29–54 (1951).

    Article  CAS  Google Scholar 

  5. Flock, Å. & Russell, I. J. J. Physiol., Lond. 235, 591–605 (1973).

    Article  CAS  Google Scholar 

  6. Teuber, H-L. in Handbook of Physiology, section I. Vol. 3 (ed. Field, J.) 1595–1668 (American Physiological Society, Washington, 1960).

    Google Scholar 

  7. Riggs, L. A., Merton, P. A. & Morton, H. B. Vision Res. 14, 997–1011 (1974).

    Article  CAS  Google Scholar 

  8. Wurtz, R. H. J. Neurophysiol. 32, 975–986 (1969); 32, 987–994 (1969).

    Article  CAS  Google Scholar 

  9. Noda, H. J. Physiol., Lond. 249, 87–102 (1975); 250, 579–595 (1975).

    Article  CAS  Google Scholar 

  10. Judge, S. J. & Wurtz, R. H. Soc. Neurosci, 7th A. Meet. Abs. 3, 564 (1977).

    Google Scholar 

  11. Matin, E. Psychol. Bull. 81, 899–917 (1974).

    Article  CAS  Google Scholar 

  12. Wurtz, R. H. & Campbell, F. W. Ass. Res. Vision Opthalmol., Spring Meeting, 1977, p. 106.

    Google Scholar 

  13. Palka, J. J. exp. Biol. 50, 723–732 (1969); Am. Zool. 12, 497–505 (1972).

    CAS  PubMed  Google Scholar 

  14. Palka, J. J. Insect Physiol. 13, 235–238 (1967).

    Article  Google Scholar 

  15. Rowell, C. H. F., O'Shea, M. & Williams, J. L. D. J. exp. Biol. 68, 157–185 (1977).

    Google Scholar 

  16. O'Shea, M. & Rowell, C. H. F. Nature 254, 53–55 (1975); J. exp. Biol. 65, 389–408 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Rowell, C. H. F. Z. vergl, Physiologie 73, 167–194 (1971).

    Article  Google Scholar 

  18. Rowell, C. H. F. & O'Shea, M. J. exp. Biol. 65, 273–288 (1976).

    CAS  PubMed  Google Scholar 

  19. Burrows, M. & Rowell, C. H. F. J. comp. Physiol. 85, 222–234 (1973).

    Article  Google Scholar 

  20. Pearson, K. & Goodman, C. J. comp. Neurol. 184, 141–166 (1979).

    Article  CAS  Google Scholar 

  21. Kien, J. & Land, M. F. Physiological Entomol. 3, 53–57 (1978).

    Article  Google Scholar 

  22. Wallace, M., Blair, S. M. & Westheimer, G. Expl Brain Res. 33, 19–25 (1978).

    Article  CAS  Google Scholar 

  23. Shepheard, P. J. exp. Biol. 60, 735–768 (1974).

    CAS  PubMed  Google Scholar 

  24. Horn, G. & Rowell, C. H. F. J. exp. Biol. 49, 143–169 (1968).

    Google Scholar 

  25. Palka, J. Am. Zool. 7, 7–28 (1967).

    Article  Google Scholar 

  26. Haskell, P. T. Nature 183, 1106–1107 (1959).

    Article  ADS  Google Scholar 

  27. Goodman, L. J. J. exp. Biol. 42, 385–407 (1965).

    Google Scholar 

  28. Kien, J. J. comp. Physiol. 113, 161–180 (1977).

    Article  Google Scholar 

  29. Collewijn, H. Vision Res. 9, 803–814 (1969).

    Article  CAS  Google Scholar 

  30. Robinson, D. A. J. Physiol., Lond. 174, 245–264 (1964).

    Article  CAS  Google Scholar 

  31. Robinson, D. L. & Wurtz, R. H. J. Neurophysiol. 39, 852–870 (1976).

    Article  CAS  Google Scholar 

  32. Richmond, B. J. & Wurtz, R. H. Soc. Neurosci. 7th A. Meet. Abstr. 3, 574 (1977).

    Google Scholar 

  33. Benvenuto, L. A. & Rezak, M. Brain Res. 108, 1–24 (1976).

    Article  Google Scholar 

  34. Sandeman, D. C. Comp. Biochem. Physiol. 24, 635–638 (1968).

    Article  CAS  Google Scholar 

  35. Westheimer, G. Archs Ophthal. 52, 710–724 (1954).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZARETSKY, M., ROWELL, C. Saccadic suppression by corollary discharge in the locust. Nature 280, 583–585 (1979). https://doi.org/10.1038/280583a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280583a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing