Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An experimental measurement of cation diffusion in almandine garnet

Abstract

COMPOSITIONAL zoning in minerals is a disequilibrium phenomenon which is in principle potentially useful for interpreting the thermal history of the host rock. Almandine-rich garnets from low and medium grade regionally metamorphosed rocks are commonly zoned1–8. The manganese content typically varies from core to rim, being high in the centre and low at the rim, producing a bell-shaped profile, whereas Fe is antipathetic to Mn. With the exception of the diffusion models of Anderson and Buckley9, such zoning has generally been explained in terms of fractionation-depletion processes2–4 where diffusion in the growing mineral is assumed to be negligible. However, in garnets from high grade rocks8,10,11, zoning is usually weak, absent or reversed, and recent authors8,12,13 have favoured the homogenisation of pre-existing or developing zoning by volume diffusion. To evaluate the importance of cation diffusion to garnet zoning, Fe–Mn interdiffusion coefficients have been measured over a restricted temperature range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harte, B. & Henley, K. J. Nature 210, 689–692 (1966).

    Article  CAS  ADS  Google Scholar 

  2. Hollister, L. S. Science 154, 1647–1651 (1966).

    Article  CAS  ADS  Google Scholar 

  3. Atherton, M. P. & Edmunds, W. M. Earth planet. Sci. Lett. 1, 185–193 (1966).

    Article  CAS  ADS  Google Scholar 

  4. Atherton, M. P. Contr. Min. Petrol. 18, 347–371 (1968).

    Article  CAS  ADS  Google Scholar 

  5. Hollister, L. S. Bull. geol. Soc. Am. 80, 2465–2494 (1969).

    Article  CAS  Google Scholar 

  6. Cooper, A. F. J. Petrol. 13, 457–492 (1972).

    Article  CAS  ADS  Google Scholar 

  7. Tracy, R. J., Robinson, P. & Thompson, A. B. Am. Miner. 61, 762–775 (1976).

    CAS  Google Scholar 

  8. Yardley, B. W. D. Am. Miner. 62, 793–800 (1977).

    CAS  Google Scholar 

  9. Anderson, D. E. & Buckley, G. R. Contr. Miner. Petrol. 40, 87–104 (1973).

    Article  CAS  ADS  Google Scholar 

  10. Blackburn, W. H. Can. Miner. 9, 691–698 (1969).

    CAS  Google Scholar 

  11. Grant, J. A. & Weiblen, P. W. Am. J. Sci. 270, 281–296 (1971).

    Article  CAS  ADS  Google Scholar 

  12. Woodsworth, G. J. Can. Miner. 15, 230–242 (1977).

    Google Scholar 

  13. Anderson, D. E. & Olimpio, J. C. Can. Miner. 15, 205–216 (1977).

    Google Scholar 

  14. Freer, R. thesis, Univ. Newcastle upon Tyne (1978).

  15. Crank, J. The Mathematics of Diffusion, 2nd ed (Oxford University Press, 1975).

    MATH  Google Scholar 

  16. Buening, D. K. & Buseck, P. R. J. geophys. Res. 78, 6852–6862 (1973).

    Article  CAS  ADS  Google Scholar 

  17. Rigby, E. B. & Cutler, I. B. J. Am. ceram. Soc. 48, 95–99 (1965).

    Article  CAS  Google Scholar 

  18. Yurek, G. J. & Schmalzried, H. Ber. Bunsenges. phys. Chem. 78, 1379–1386 (1974).

    CAS  Google Scholar 

  19. Appel, M. & Pask, J. A. J. Am. ceram. Soc. 54, 152–158 (1971).

    Article  CAS  Google Scholar 

  20. Hensen, B. J. A. Rep. Dir. Geophys. Lab., Yb. 71, 418–421 (1971).

    Google Scholar 

  21. Zaplatynsky, I. J. Am. ceram. Soc. 45, 28–31 (1962).

    Article  CAS  Google Scholar 

  22. Wagner, J. B. Atomic Diffusion in Semiconductors (ed. Shaw, D.) 543 (Plenum, London, 1973).

    Book  Google Scholar 

  23. Kretz, R. Can. Miner. 12, 1–20 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FREER, R. An experimental measurement of cation diffusion in almandine garnet. Nature 280, 220–222 (1979). https://doi.org/10.1038/280220a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280220a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing