Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of plasmodial glutathione metabolism on the host cell

Abstract

ONE inherited alteration of human red cell metabolism—quantitative deficiency of the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD)—has attained high frequency in many areas of endemic malaria and may protect against fulminant Plasmodium falciparum in some unknown fashion1–5. G-6-PD catalyses the first step of the pentose phosphate pathway which provides reduced NADPH necessary for conversion of oxidised to reduced glutathione (GSSG→GSH)6. Erythrocytes deficient in G-6-PD are inefficient in generating NADPH and, when exposed to oxidants, lose GSH, accumulate oxidised haemoglobin and are destroyed by the reticuloendothelial system6. We hypothesised that, if the malaria parasite were to use red-cell NADPH for parasitic functions, the G-6-PD-deficient erythrocyte might be incapable of maintaining adequate GSH content. This would predispose the cell to premature destruction before the parasite matured, thereby limiting the severity of infection7–9. In exploring this hypothesis, we have investigated factors affecting GSH metabolism in malaria-infected mouse erythrocytes. We find that P. berghei malaria may utilise host-cell NADPH for the maintenance of parasite GSH. These observations may help elucidate both the parasite-induced red cell oxidant damage7 and the mechanism whereby G-6-PD deficiency protects against fulminant malaria infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Livingstone, F. B. Ann. Rev. Genet. 5, 33–64 (1971).

    Article  Google Scholar 

  2. Siniscalco, M. et al. Bull. Wld Hlth Org. 34, 379–393 (1966).

    CAS  Google Scholar 

  3. Gilles, H. M. et al. Lancet, i, 138–140 (1967).

    Article  CAS  Google Scholar 

  4. Kruatrachue, M., Klongkumnuanhara, K. & Harinasuta, C., Lancet i, 404–406 (1966).

    Article  Google Scholar 

  5. Luzzatto, L., Usanga, E. A. & Reddy, S. Science 164, 839–842 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Eaton, J. W. & Brewer, G. J. in The Red Blood Cell (ed. Surgenor, D. M.) 435–471 (Academic, New York, 1974).

    Book  Google Scholar 

  7. Etkin, N. L. & Eaton, J. W. in Erythrocyte Structure and Function (ed. Brewer, G. J.) 219–232 (Liss, New York, 1975).

    Google Scholar 

  8. Eckman, J. R., Eaton, J. W., Berger, E. & Jacob, H. S. Trans. As. Am. Phys. 89, 105–115 (1976).

    CAS  Google Scholar 

  9. Eaton, J. W., Eckman, J. R., Berger, E. & Jacob, H. S. Nature 264, 758–760 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Williams, S. G. & Richards, W. H. G. Annls trop. Med. Parasi. 67, 169–178 (1973).

    Article  CAS  Google Scholar 

  11. Prins, H. K. & Loos, J. A. in Biochemical Methods in Red Cell Genetics (ed. Yunis., J. J.) 126–130 (Academic, New York, 1969).

    Google Scholar 

  12. Beutler, E. Red Cell Metabolism : A Manual of Biochemical Methods 2nd edn, 69 (Grune and Stratton, New York, 1975).

    Google Scholar 

  13. Martin, W. J., Finerty, J. & Rosenthal, A. Nature new Biol. 233, 260–261 (1971).

    Article  CAS  Google Scholar 

  14. Nakashima, K. S., Miwa, S. & Yamauchi, K. Biochim. biophys. Acta 445, 309–323 (1976).

    Article  CAS  Google Scholar 

  15. Kaplan, J. C. Nature 217, 256–258 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Picard-Maureau, A., Hempelmann, E., Krammer, G., Jackisch, R. & Jung, A. Tropenmed. Parasit. 26, 405–416 (1975).

    CAS  Google Scholar 

  17. Fletcher, K. A., Canning, M. V. & Theakston, R. D. G. Annls trop. Med. Parasit. 71, 125–130 (1977).

    Article  CAS  Google Scholar 

  18. Bowman, I. B. R., Grant, R. P., Kermack, W. O. & Ogston, D. Biochem. J. 78, 472–478 (1961).

    Article  CAS  Google Scholar 

  19. Homewood, C. A. Bull Wld Hlth Org. 55, 229–235 (1977).

    CAS  Google Scholar 

  20. Shakespeare, P. G. & Trigg, P. I. Nature 241, 538–540 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Barnes, M. G., Polet, H., Denison, T. R. & Barr, G. F. J. Lab. clin. Med. 74, 1–11 (1969).

    CAS  PubMed  Google Scholar 

  22. Kosower, N. S., Kosower, E. M. & Wertheim, B. Biochem. biophys. Res. Commun. 37, 593–596 (1969).

    Article  CAS  Google Scholar 

  23. Sass, M. D., Caruso, C. J. & Farhangi, M. J. Lab. clin. Med. 79, 760–767 (1967).

    Google Scholar 

  24. Sass, M. D., Caruso, C. J. & Axelrod, D. R. Clin. chim. Acta 24, 77–85 (1969).

    Article  CAS  Google Scholar 

  25. Kosower, N. S. & Kosower, E. M. Lancet ii, 1343–1345 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ECKMAN, J., EATON, J. Dependence of plasmodial glutathione metabolism on the host cell. Nature 278, 754–756 (1979). https://doi.org/10.1038/278754a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278754a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing