In vivo proteolytic cleavage of colicins requires specific receptor binding


COLICINS are plasmid-specified antibiotic proteins produced by some strains of coliform bacteria1. They are distinguished from other bacterial antibiotics such as aminoglycosides and tetracyclines by their large molecular weights (40–80,000) and their narrow host range. Colicins only kill bacteria having the appropriate cell-surface receptors1,2, and even then the ability of a cell to produce a given colicin usually confers immunity to killing by that colicin. We are interested in the comparative properties of colicins and their similarities to bacterial toxins that are active against mammalian cells, some of which are also encoded by extra-chromosomal elements. A fundamental question concerning the action of both colicins and toxins is how these large, essentially hydrophilic proteins traverse the mainly hydrophobic cell surface to reach the lesion sites. For colicins these include DNA for colicin E2 (ref. 3), RNA (colicin E3 and cloacin DF13)4,5, and presumably the inner cell membrane, where membrane potential and energy metabolism are affected (colicins E1, K and Ia (refs 2, 6, 7)). Here, we show that binding of colicin to its specific receptor can result in a specific proteolytic cleavage to generate two peptide fragments. The smaller of these, derived from the C-terminal region of the colicin, has a greater specific biological killing activity in vitro than the parent molecule. We propose that in vivo the proteolytically derived C-terminal fragment is transported across the cell surface to the lesion site. This process seems analogous to the apparent cleavage of diphtheria toxin during its entry into mammalian cells8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Reeves, P. in The Bacteriocins, Molecular Biology and Biophysics Vol. 11, 6 (Chapman and Hall, London, 1972).

    Google Scholar 

  2. 2

    Holland, I. B. Adv. microbial Physiol. 12, 66 (1975).

    Google Scholar 

  3. 3

    Schaller, K. & Nomura, M. Proc. natn. Acad. Sci. U.S.A. 73, 3989 (1976).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lau, C. & Richards, F. M. Biochemistry 15, 3856 (1976).

    CAS  Article  Google Scholar 

  5. 5

    De Graaf, F. K., Planta, R. J. & Stouthamer, A. H. Biochim. biophys. Acta 240, 122 (1971).

    CAS  Article  Google Scholar 

  6. 6

    Schein, S. J., Kagan, B. L. & Finkelstein, A. Nature 276, 159 (1978).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Weiss, M. J. & Luria, S. E. Proc. natn. Acad. Sci. U.S.A. 75, 2483 (1978).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bonventre, P. F. Microbiology 272 (1975).

  9. 9

    Yamamato, H., Nishida, K., Beppu, T. & Arima, K. J. Biochem., Tokyo 83, 827 (1978).

    Article  Google Scholar 

  10. 10

    Watson, D. H., Durkacz, B. W. & Sherratt, D. J. Biochem. Soc. Trans. (in the press).

  11. 11

    Mooi, F. R. & De Graaf, F. K. FEBS Lett. 62, 304 (1976).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Yamato, I., Anraku, Y. & Hisosawa, K. J. Biochem., Tokyo 77, 705 (1975).

    CAS  Article  Google Scholar 

  13. 13

    Tyler, J. & Sherratt, D. J. Molec. gen. Genet. 140, 349 (1975).

    CAS  PubMed  Google Scholar 

  14. 14

    Phillips, S. K. & Cramer, W. A. Biochemistry 12, 1170 (1973).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Sherratt, D. J. Nature 265, 297 (1977).

    ADS  Article  Google Scholar 

  16. 16

    Blobel, G. & Sabatini, D. in Biomembranes Vol. 2, 193 (Plenum, New York, 1971).

    Google Scholar 

  17. 17

    Gray, W. R. Meth. Enzym. 11, 139; 469 (1967).

    CAS  Article  Google Scholar 

  18. 18

    Ambler, R. P. Meth. Enzym. 11, 155 (1967).

    CAS  Article  Google Scholar 

  19. 19

    Fraenkel-Conrat, H. & Tsung, C. M. Meth. Enzym. 11, 151 (1967).

    CAS  Article  Google Scholar 

  20. 20

    Webster, R. E., Engelhardt, D. L., Konigsberg, W. & Zinder, N. D. J. molec. Biol. 29, 27 (1967).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Chang, C. N., Blobel, G. & Model, P. Proc. natn. Acad. Sci. U.S.A. 75, 361 (1978).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Rice, R. H. & Means, G. E. J. biol. Chem. 246, 831 (1971).

    CAS  PubMed  Google Scholar 

  23. 23

    Sander, G. Eur. J. Biochem. 75, 523 (1977).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

WATSON, D., SHERRATT, D. In vivo proteolytic cleavage of colicins requires specific receptor binding. Nature 278, 362–364 (1979).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.