Movement of microorganisms in viscous environments

Abstract

SOME microorganisms swim well in solutions containing viscous agents (molecules with long unbranched chains, such as methylcellulose)1–7. Leptospira, a slender helical bacterium, swims more rapidly in such an environment than it does in water3, even at viscosities of several hundred centipoise (1 cP = 10−3 kg m−1 s−1). This behaviour is baffling until one realises that solutions of viscous agents are highly structured (gel-like). The solute forms a loose quasi-rigid network easily penetrated by particles of microscopic size. The network can exert forces normal to a segment of the body of a slender cell even when that segment does not possess a component of velocity in the normal direction; hydrodynamic treatments of the motion of microorganisms (or of cilia and flagella) do not apply. Solutions containing highly branched polymers, for example, Ficoll, are much more homogeneous. Here, we will review existing evidence for the gel-like character of viscous agents and describe experiments in which the motion of Leptospira or Escherichia coli are compared in solutions of methylcellulose and Ficoll of the same apparent viscosity. Our data show that solutions of methylcellulose are gel-like even when quite dilute, when the bulk viscosity is as small as 2 cP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Shoesmith, J. G. J. gen. Microbiol. 22, 528–535 (1960).

  2. 2

    Schneider, W. R. & Doetsch, R. N. J. Bact. 117, 696–701 (1974).

  3. 3

    Kaiser, G. E. & Doetsch, R. N. Nature 255, 656–657 (1975).

  4. 4

    Strength, W. J. et al. Int. J. Syst. Bact. 26, 253–268 (1976).

  5. 5

    Greenberg, E. P. & Canale-Parola, E. J. Bact. 131, 960–969 (1977).

  6. 6

    Greenberg, E. P. & Canale-Parola, E. J. Bact. 132, 356–358 (1977).

  7. 7

    Canale-Parola, E. A. Rev. Microbiol. 32, 69–99 (1978).

  8. 8

    Davis, W. E. & Elliott, J. H. in Cellulose and Cellulose Derivatives Vol. 5, Part 3, 2nd edn (eds Ott, E., Spurlin, H. M. & Grafflin, M. W.) 1203–1246 (Interscience, New York, 1955).

  9. 9

    Laurent, T. C., Ryan, M. & Pietruszkiewicz, A. Biochim. biophys. Acta 42, 476–485 (1960).

  10. 10

    Laurent, T. C., Björk,I., Pietruszkiewicz, A. & Persson, H. Biochim. biophys. Acta 78, 351–359 (1963).

  11. 11

    Ackers, G. K. & Steere, R. L. Biochim. biophys. Acta 59, 137–149 (1962).

  12. 12

    Preston, B. N., Björn, Ö. & Laurent, T. C. Eur. J. Biochem. 33, 401–406 (1973).

  13. 13

    Maroudas, N. G., Whittenberger, B. & Glaser, L. Nature 274, 722 (1978).

  14. 14

    Canale-Parola, E., Rosenthal, S. L. & Kupfer, D. G. Antonie van Leeuwenhoek. 32, 113–124 (1966).

  15. 15

    Breznak, J. A. & Canale-Parola, E. J. Bact. 97, 386–395 (1969).

  16. 16

    Canale-Parola, E. in Methods in Microbiology Vol. 8 (eds Norris, J. R. & Ribbons, D. W.) 61–73 (Academic, New York, 1973).

  17. 17

    Breznak, J. A. & Canale-Parola, E. Archs Microbiol. 105, 1–12 (1975).

  18. 18

    Hespell, R. B. Int. J. Syst. Bact. 27, 371–381 (1977).

  19. 19

    Cox, C. D. & Larson, A. D. J. Bact. 73, 587–589 (1957).

  20. 20

    Metzner, P. Jb. wiss. Bot. 59, 325–412 (1920).

  21. 21

    Berg, H. C., Bromley, D. B. & Charon, N. W. in 28th Symp. Soc. gen. Microbiol. (eds Stanier, R. Y., Rogers, H. J. & Ward, J. B.) 285–294 (Cambridge, London, 1978).

  22. 22

    Noguchi, H. J. exp. Med. 27, 575–592 (1918).

  23. 23

    Jarosch, R. Öst. bot. Z. 114, 255–306 (1967).

  24. 24

    Cox, P. J. & Twigg, G. I. Nature 250, 260–261 (1974).

  25. 25

    Gray, J. Q. Jl microsc. Sci. 94, 551–578 (1953).

  26. 26

    Chwang, A. T., Winet, H. & Wu, T. Y. J. Mechanochem. Cell Motility 3, 69–76 (1974).

  27. 27

    Berg, H. C. J. theor. Biol. 56, 269–273 (1976).

  28. 28

    Gillespie, T. J. Polym. Sci. 46, 383–393 (1960).

  29. 29

    Sundelöf, L.-O. & Nyström, B. J. Polym. Sci. Polym. Lett. Ed. 15, 377–384 (1977).

  30. 30

    Winet, H. J. exp. Biol. 64, 283–302 (1976).

  31. 31

    Johnson, R. C. & Harris, V. G. J. Bact. 94, 27–31 (1967).

  32. 32

    Berg, H. C. & Tedesco, P. M. Proc. natn. Acad. Sci. U.S.A. 72, 3235–3239 (1975).

  33. 33

    Berg, H. C. Nature 249, 77–79 (1974).

  34. 34

    Kobayasi, S., Maeda, K. & Imae, Y. Rev. Sci. Instrum. 48, 407–410 (1977).

  35. 35

    Reichert, K. Zentbl. Bakt. ParasitKde Abt. 1 Orig. 51, 14–94 (1909).

  36. 36

    Pijper, A. J. Path. Bact. 58, 325–342 (1946).

  37. 37

    Pijper, A. J. Bact. 53, 257–269 (1947).

  38. 38

    Shimada, K., Kamiya, R. & Asakura, S. Nature 254, 332–334 (1975).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

BERG, H., TURNER, L. Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979). https://doi.org/10.1038/278349a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.