Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene numbers as measured by single-copy DNA saturation with mRNA are routinely overestimates

Abstract

A MAJOR experimental approach to the elucidation of the role of differential gene expression in developmental processes has been to measure the number of different mRNA sequences in eukaryotic cells1. This number has been obtained from the percentage of radioactive single-copy DNA rendered double-stranded during hybridisation with homologous mRNA. The percentage, appropriately corrected for the average size of mRNA and the chemical complexity of the unique DNA of the organisms, can be related to the total number of different genes expressed in the functional mRNAs of the cell type or tissue studied2. The number and distribution of different mRNA sequences can also be determined by hybridising radioactive cDNA with excess unlabelled mRNA and comparing its kinetics of hybridisation with a suitable kinetic standard3. However, here, I discuss the use of single-copy DNA saturation with mRNA, and suggest that gene numbers obtained in this way are routinely overestimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewin, B. Cell 4, 77 (1975).

    Article  CAS  Google Scholar 

  2. Galau, G. A., Britten, R. J. & Davidson, E. H. Cell 2, 9 (1974).

    Article  CAS  Google Scholar 

  3. Bishop, J. O., Morton, J. G., Rosbash, M. & Richardson, M. Nature 250, 199 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Axel, R., Feigelson, P. & Schutz, G. Cell 7, 247 (1976).

    Article  CAS  Google Scholar 

  5. Rozek, C. E., Orr, W. C. & Timberlake, W. E. Biochemistry 17, 716 (1978).

    Article  CAS  Google Scholar 

  6. Savage, M. J., Sala-Trepat, J. M. & Bonner, J. Biochemistry 17, 462 (1978).

    Article  CAS  Google Scholar 

  7. Hereford, L. M. & Rosbash, M. Cell 10, 453 (1977).

    Article  CAS  Google Scholar 

  8. Britten, R. J. & Konne, D. E. Science 161, 529 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Davidson, E. H., Hough, B. R., Amenson, C. S. & Britten, R. J. J. molec. Biol. 77, 1 (1973).

    Article  CAS  Google Scholar 

  10. Graham, D. E., Neufeld, B. R., Davidson, E. H. & Britten, R. J. Cell 3, 127 (1974).

    Article  Google Scholar 

  11. Goldberg, R. B., Hoschek, G. & Kamalay, J. C. Cell 14, 123 (1978).

    Article  CAS  Google Scholar 

  12. Holmes, D. S. & Bonner, J. Biochemistry 13, 841 (1974).

    Article  CAS  Google Scholar 

  13. Kiper, M., Bartels, D., Herzfeld, F. & Richter, G. (in preparation).

  14. Flavell, R. B., Bennett, M. D., Smith, J. B. & Smith, D. B. Biochem. Genet. 12, 257 (1974).

    Article  CAS  Google Scholar 

  15. Flavell, R. B. & Smith, D. B. Heredity 37, 231 (1976).

    Article  Google Scholar 

  16. Walbot, V. & Dure, L. S. J. molec. Biol. 101, 503 (1976).

    Article  CAS  Google Scholar 

  17. Zimmermann, J. L. & Goldberg, R. B. Chromosoma 59, 227 (1977).

    Article  Google Scholar 

  18. Kiper, M. & Herzfeld, F. Chromosoma 65, 335 (1978).

    Article  CAS  Google Scholar 

  19. Murray, M. G., Cuellar, R. E. & Thompson, W. F. Biochemistry 17, 57 (1978).

    Article  Google Scholar 

  20. Garapin, A. C. et al. Cell 14, 629 (1978).

    Article  CAS  Google Scholar 

  21. Jeffreys, A. J. & Flavell, R. A. Cell 12, 1097 (1977).

    Article  CAS  Google Scholar 

  22. Woo, S. L. et al. Proc. natn. Acad, Sci. U.S.A. 75, 3688 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Maxwell, J. H., Van Ness, J. & Hahn, W. E. Nucleic Acids Res. 5, 2033 (1978).

    Article  CAS  Google Scholar 

  24. Hudspeth, M. E. S., Timberlake, W. E. & Goldberg, R. B. Proc. natn. Acad. Sci. U.S.A. 74, 4332 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Timberlake, W. E. & Shumard, D. S. Cell 10, 623 (1977).

    Article  CAS  Google Scholar 

  26. Galau, G. A. et al. Cell 7, 487 (1976).

    Article  CAS  Google Scholar 

  27. Kleiman, L., Birnie, G. D., Young, B. D. & Paul, J. Biochemistry 16, 1218 (1977).

    Article  CAS  Google Scholar 

  28. Birnie, G. D., MacPhail, E., Young, B. D., Getz, M. J. & Paul, J. Cell Differentiation 3, 221 (1974).

    Article  CAS  Google Scholar 

  29. Mauron, A. & Spohr, G. Nucleic Acids Res. 5, 3013 (1978).

    Article  CAS  Google Scholar 

  30. Kiper, M., Bartels, D. & Köchel, H. in Genome, Chromatin, and Karyotype: Evolution and Function (eds. Nagl, W., Hemleben, V. & Ehrendorfer, F.) (Springer, New York, in the press).

  31. Köchel, H. thesis, Univ. Hannover (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIPER, M. Gene numbers as measured by single-copy DNA saturation with mRNA are routinely overestimates. Nature 278, 279–280 (1979). https://doi.org/10.1038/278279a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278279a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing