Sodium channels in rabbit cardiac Purkinje fibres

Abstract

SODIUM channels are essential for normal impulse conduction in the heart and are a major target for the therapeutic action of antiarrhythmic drugs. However, these channels have not been well studied due to the difficulty of measuring cardiac sodium currents under voltage clamp. Previous efforts have not been generally accepted because of doubts about the adequacy of voltage control1–8. The absence of direct information on cardiac sodium channels is unfortunate as evidence exists suggesting that they differ significantly from sodium channels in other excitable membranes. First, blockade of sodium-dependent impulses in heart requires tetrodotoxin (TTX) at 103–104 times greater concentrations than in nerve or skeletal muscle9. Second, the effect of TTX in heart appears to be voltage-dependent10, unlike its action on sodium currents in other excitable cells11,12. These findings raise the possibility that cardiac sodium channels may have novel structural properties. Further progress depends on the development of reliable measures of sodium current in the heart itself. We report here voltage-clamp recordings of sodium currents in rabbit Purkinje fibres satisfying a number of criteria for adequate voltage control. The experiments indicate the feasibility of characterising sodium channels in an intact mammalian cardiac preparation and open the way for the direct analysis of antiarrhythmic drug action on cardiac conducting tissue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Johnson, E. A. & Lieberman, M. A. Rev. Physiol. 33, 479–532 (1971).

    CAS  Article  Google Scholar 

  2. 2

    Kootsey, J. M. & Johnson, E. A. Biophys. J. 12, 1496–1508 (1972).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Tarr, M. & Trank, J. W. Biophys. J. 14, 627–643 (1974).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ramon, F., Anderson, N., Joyner, R. & Moore, J. W. Biophys. J. 15, 55–69 (1975).

    CAS  Article  Google Scholar 

  5. 5

    Connor, J., Barr, L. & Jakobsson, E. Biophys. J. 15, 1047–1067 (1975).

    CAS  Article  Google Scholar 

  6. 6

    Noble, D. The Initiation of the Heartbeat (Oxford University Press, 1975).

    Google Scholar 

  7. 7

    Fozzard, H. A. & Beeler, G. W. Jr, Circ. Res. 37, 403–413 (1975).

    CAS  Article  Google Scholar 

  8. 8

    Attwell, D. & Cohen, I. Prog. Biophys. molec. Biol. 31, 201–245 (1977).

    CAS  Article  Google Scholar 

  9. 9

    Narahashi, T. Physiol. Rev. 54, 813–889 (1974).

    CAS  Article  Google Scholar 

  10. 10

    Baer, M., Best, P. M. & Reuter, H. Nature 263, 344–345 (1976).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Takata, M., Moore, J. W., Kao, C. Y. & Fuhrman, F. A. J. gen. Physiol. 49, 977–988 (1966).

    CAS  Article  Google Scholar 

  12. 12

    Ulbricht, W. & Wagner, H.-H. J. Physiol., Lond. 252, 159–184 (1975).

    CAS  Article  Google Scholar 

  13. 13

    Sommer, J. R. & Johnson, E. A. J. Cell Biol. 36, 497–526 (1968).

    CAS  Article  Google Scholar 

  14. 14

    Harrington, L. & Johnson, E. A. Biophys. J. 13, 626–647 (1973).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Colatsky, T. J., Siegelbaum, S. A. & Tsien, R. W. Biophys. J. 21, 56a (1978).

    Google Scholar 

  16. 16

    Colatsky, T. J. & Tsien, R. W. J. Physiol., Lond. (in the press).

  17. 17

    Thompson, S. M. thesis, Univ. Iowa (1975).

  18. 18

    Deck, K. A., Kern, R. & Trautwein, W. Pflügers Archiv 280, 50–62 (1964).

    CAS  Article  Google Scholar 

  19. 19

    Weidmann, S. J. Physiol., Lond. 127, 213–224 (1955).

    CAS  Article  Google Scholar 

  20. 20

    Goldman, D. E. J. gen. Physiol. 27, 37–60 (1943).

    CAS  Article  Google Scholar 

  21. 21

    Hodgkin, A. L. & Katz, B. J. Physiol., Lond. 108, 37–77 (1949).

    CAS  Article  Google Scholar 

  22. 22

    Chandler, W. K. & Meves, H. J. Physiol., Lond. 180, 788–820 (1965).

    CAS  Article  Google Scholar 

  23. 23

    Ellis, D. J. Physiol., Lond. 273, 211–240 (1977).

    CAS  Article  Google Scholar 

  24. 24

    Miura, D. S., Hoffman, B. F. & Rosen, M. R. J. gen. Physiol. 69, 463–474 (1977).

    CAS  Article  Google Scholar 

  25. 25

    Adrian, R. H. & Marshall, M. W. J. Physiol., Lond. 268, 223–250 (1977).

    CAS  Article  Google Scholar 

  26. 26

    Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 497–506 (1952).

    CAS  Article  Google Scholar 

  27. 27

    Dudel, J. & Rüdel, R. Pflügers Arch. ges. Physiol. 315, 136–158 (1970).

    CAS  Article  Google Scholar 

  28. 28

    deHemptinne, A. Pflügers Arch. ges. Physiol. 363, 87–95 (1976).

    CAS  Article  Google Scholar 

  29. 29

    Lee, K. S., Weeks, T. A., Kao, R. L., Akaike, N. & Brown, A. M. Nature 278, 269–271 (1979).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

COLATSKY, T., TSIEN, R. Sodium channels in rabbit cardiac Purkinje fibres. Nature 278, 265–268 (1979). https://doi.org/10.1038/278265a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.