Letter | Published:

Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics

Naturevolume 277pages148150 (1979) | Download Citation



STREPTOMYCIN, an aminoglycoside antibiotic, can reverse the mutant phenotypes of many nonsense and missense mutations in Escherichia coli and in bacteriophage T4. This phenomenon has been called phenotypic suppression, since the mutant phenotype returns after removal of the drug1. The most likely explanation for phenotypic suppression is that streptomycin promotes mistranslation in vivo, and that acceptable amino acids are inserted into the growing polypeptide chain at the site of the mutant codon. Consistent with this view is the observation that streptomycin causes E. coli ribosomes to mistranslate RNA in vitro2,3. Streptomycin and neomycin have however been found to have no effect in stimulating ribosomes from eukaryotic cells to mistranslate RNA in vitro4,5. A subclass of the aminoglycoside antibiotics has been shown6,7 to stimulate eukaryotic ribosomes to misread RNA. The highly active molecules are distinguished in that they contain the drug fragment paromamine (or 3′-deoxyparomamine). We have therefore examined the capacity of various aminoglycosides to suppress mutations phenotypically in the eukaryotic yeast, Saccharomyces cerevisiae. The results presented here show that paromomycin, which contains paromamine, is capable of phenotypic suppression of the nonsense mutations in S. cerevisiae.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Gorini, L. in Ribosomes (eds Nomura, M., Tissieres, A. & Lengyel, P.). 791–803 (Cold Spring Harbor Laboratory, New York, 1974).

  2. 2

    Davies, J., Gilbert, W. & Gorini, L. Proc. natn. Acad. Sci. U.S.A. 51, 883–890 (1964).

  3. 3

    Friedman, S. M. & Weinstein, I. B. Proc. natn. Acad. Sci. U.S.A. 52, 988–996 (1964).

  4. 4

    Weinstein, I. B., Ochoa, M. Jr & Friedman, S. M. Biochemistry 5, 3332–3339 (1966).

  5. 5

    Freidman, S. M., Berezney, R. & Weinstein, I. B. J. biol. Chem. 243, 5044–5048 (1968).

  6. 6

    Palmer, E. & Wilhelm, J. M. Cell 13, 329–334 (1978).

  7. 7

    Wilhelm, J. M., Jessop, J. J. & Pettitt, S. E. Biochemistry 17, 1143–1149 (1978).

  8. 7a

    Wilhelm, J. M., Pettitt, S. E. & Jessop, J. J. Biochemistry 17, 1149–1153 (1978).

  9. 8

    Mortimer, R. K. & Hawthorne, A. C. in The Yeasts, I. (eds Rose, A. H. & Harrison, J. S.). 385–460 (Academic, New York, 1969).

  10. 9

    Champe, S. P. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 48, 532–546 (1962).

  11. 10

    Garen, A. & Siddiqi, O. Proc. natn. Acad. Sci. U.S.A. 48, 1121–1127 (1962).

  12. 11

    Barnett, W. E. & Brockman, H. E. Biochem. biophys. Res. Commun. 7, 199–203 (1962).

  13. 12

    Bayliss, F. T. & Vinopal, R. T. Science 174, 1339–1341 (1971).

  14. 13

    Leibman, S. N., Stewart, J. W., Parker, S. H. & Sherman, F. J. molec. Biol. 109, 13–22 (1977).

Download references

Author information


  1. Department of Microbiology and Department of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642



  1. Search for EDWARD PALMER in:

  2. Search for JAMES M. WILHELM in:

  3. Search for FRED SHERMAN in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.