Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell adhesion mediated by glycolipids

Abstract

ADHESION between adjoining cells is a fundamental biological event, preceding both morphogenesis and organogenesis and also providing the basis for cellular recognition and membrane fusion1–4. Adhesion is apparently mediated by carbohydrate moieties on the plasma membrane as shown in studies of sugar transferases5–7 and glycosidases8. A number of mechanisms such as the antigen–antibody reaction9,10, the specific sugar transferase–substrate complex formation11 and hydrogen bonding11 between closely opposing carbohydrate chains have been proposed for the specific and nonspecific adhesion of cells, but the relevant surface molecules have not yet been isolated or identified. Two types of cell adhesion have been described: one is the reaggregation of dissociated animal cells in serum which may involve antibodies9,10 or unidentified components of serum such as the conglutinin12. A second type of adhesion occurs in the absence of serum, and is probably regulated by glycoprotein factors13,14. Recently we found that lipid particles containing phospholipids or glycolipids were agglutinated by serum and that glycolipid particles adhered most strongly to tissue culture cells even in the absence of serum15. We report here that lipids, in particular glycolipids, could mediate adhesion of animal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oseroff, A. R., Robbins, P. W. & Burger, M. M. A. Rev. Biochem. 42, 647–682 (1973).

    Article  CAS  Google Scholar 

  2. Moscona, A. A. & Moscana, H. J. Anatomy 86, 287–301 (1952).

    CAS  Google Scholar 

  3. Steinberg, M. S. J. exp. Zool. 173, 395–434 (1970).

    Article  CAS  Google Scholar 

  4. Lucy, J.A. Nature 227, 814–817 (1970).

    Article  ADS  Google Scholar 

  5. Oppenheimer, S. B., Edidin, M., Orr, C. W. & Roseman, S., Proc. natn. Acad. Sci. U.S.A. 63, 1395–1402 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Roth, S. & White, D. Proc. natn. Acd. Sci. U.S.A. 69, 485–489 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Roth, S., Mcguire, E. J. & Roseman, S. J. Cell Biol. 51, 536–547 (1971).

    Article  CAS  Google Scholar 

  8. Roth, S., Mcguire, E. J. & Roseman, S. J. Cell Biol. 51, 525–535 (1971).

    Article  CAS  Google Scholar 

  9. Tyler, A. Growth (Suppl.) 10, 7–19 (1947).

    Google Scholar 

  10. Weiss, P. Yale J. Biol. Med. 19, 235–278 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosemam, S. Chem. Phys. Lipids 5, 270–297 (1970).

    Article  Google Scholar 

  12. Kabat, E. A. & Mayer, M. M. in Experimental Immunochemistry 228–229 (Charles C. Thomas, Springfield, 1964).

    Google Scholar 

  13. Lilien, J. E. & Moscona, A. A. Science 157, 70–72 (1967).

    Article  ADS  CAS  Google Scholar 

  14. Lilien, J. E. Curr. Top. devl Biol. 4, 169–195 (1969).

    Article  CAS  Google Scholar 

  15. Huang, R. T. C. Z. Naturforsch. 32 c, 656–659 (1977).

    Article  CAS  Google Scholar 

  16. Huang, R. T. C. Z. Naturforsch. 31 c, 737–740 (1976).

    Article  CAS  Google Scholar 

  17. Chipowsky, S., Lee, Y. C. & Roseman, S. Proc. natn. Acad. Sci. U.S.A. 70, 2309–2312 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Weigel, P. H., Schmel, E., Lee, Y. C. & Roseman, S. J. biol. Chem. 253, 330–333 (1978).

    CAS  PubMed  Google Scholar 

  19. Renkonen, O., Gahmberg, C. G., Simons, K. & Kaariainen, L. Biochim. biophys. Acta 255, 66–78 (1972).

    Article  CAS  Google Scholar 

  20. Hakomori, S. I. Chem. Phys. Lipids 5, 96–115 (1970).

    Article  CAS  Google Scholar 

  21. Van Heyningen, W. E., Carpenter, C. C. J., Pierce, N. F. & Greenough, W. B. J. infect. Dis. 124, 415–428 (1971).

    Article  CAS  Google Scholar 

  22. Van Heyningen, W. E. J. gen. Microbiol. 20, 310–320 (1959).

    Article  CAS  Google Scholar 

  23. Lieb, H. & Mladenovic, M. Hoppe-Seyler's Z. physiol. Chem. 181, 208 (1929).

    Article  CAS  Google Scholar 

  24. Klenk, E. & Schumann, E. Hoppe-Seyler's Z. physiol. Chem. 272, 177–188 (1942).

    Article  CAS  Google Scholar 

  25. Carter, H. E., Rothfus, J. A. & Gigg, R. J. Lipid Res. 2, 228–239 (1961).

    Google Scholar 

  26. Whistler, R. L. & BeMillr, J. N. Meth. Carbohydrate Chem. I, 42–44 (1962).

    Google Scholar 

  27. Talley, E. A. Meth. Carbohydrate Chem. II, 337–340 (1963).

    Google Scholar 

  28. Kuhn, R., Gauhe, A. & Baer, H. H. Chem. Ber. 86, 827–830 (1953).

    Article  CAS  Google Scholar 

  29. Klenk, E. & Gielen, W. Hopp-Seyler's Z. physiol. Chem. 326, 144–157 (1961).

    Article  CAS  Google Scholar 

  30. Dulbecco, R. & Freeman, G. Virology 8, 396–397 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUANG, R. Cell adhesion mediated by glycolipids. Nature 276, 624–626 (1978). https://doi.org/10.1038/276624a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276624a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing