Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve

Abstract

ACETYLCHOLINESTERASE (AChE; EC 3.1.1.7) is known to be transported rapidly within peripheral motor nerves, both towards and away from nerve cell bodies1–3. Of the total amount of neural AChE, approximately 15% is mobile, with about 10% moving towards the nerve terminals and about 5% returning towards cell bodies, the remaining 85% of the enzyme being stationary. Since the mean velocity of orthograde transport is about twice that of the retrograde flow, the total flux of enzyme is 3–4 times greater in the distal than in the proximal direction. Although the fate of this transported AChE is not entirely clear, it has recently been shown that some of the distally transported enzyme may never arrive at the nerve terminals, being incorporated into the axolemma at sites all along the neurone4,5. This axolemmal incorporation is slow, and it seems likely that AChE would accumulate in the terminals unless there were local mechanisms for its removal, such as proteolytic digestion or extrusion from the cell as has been demonstrated in non-neuronal tissue6,7. We now offer evidence that AChE is released from nerve terminals in response to nerve stimulation and suggest that this release may be parallel to, but separate from, release of neurotransmitter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lubinska, L. & Niemierko, S. Brain Res. 27, 329–342 (1971).

    Article  CAS  Google Scholar 

  2. Ranish, N. & Ochs, S. J. Neurochem. 19, 2641–2649 (1972).

    Article  CAS  Google Scholar 

  3. Brimijoin, S. & Wiermaa, M. J. J. Physiol., Lond. (in the press).

  4. Skau, K. A. & Brimijoin, S. Abstr. VII Int. Congr. Pharmac. (in the press).

  5. Brimijoin, S., Skau, K. & Wiermaa, M. J. J. Physiol., Lond. (in the press).

  6. Wilson, B. W. & Walker, C. R. Proc. natn. Acad. Sci. U.S.A. 71, 3194–3198 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Wilson, B. W., Nieberg, P. S., Walker, C. R., Linkhart, T. A. & Fry, D. M. Devi Biol. 33, 285–299 (1973).

    Article  CAS  Google Scholar 

  8. Potter, L. T. J. Pharmac. exp. Ther. 156, 500–506 (1967).

    CAS  Google Scholar 

  9. Musick, J. & Hubbard, J. I. Nature 237, 279–281 (1972).

    Article  ADS  CAS  Google Scholar 

  10. del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 553–559 (1954); ibid, 124, 560–578 (1954).

    Article  CAS  Google Scholar 

  11. del Castillo, J. & Engback, L. J. Physiol., Lond. 124, 370–384 (1954).

    Article  CAS  Google Scholar 

  12. Straughan, D. W. Br. J. Pharmac. 15, 417–424 (1960).

    CAS  Google Scholar 

  13. Hall, Z. W. J. Neurobiol. 4, 343–361 (1973).

    Article  CAS  Google Scholar 

  14. Vigny, M., Koenig, J. & Rieger, F. J. Neurochem. 27, 1347–1353 (1976).

    Article  CAS  Google Scholar 

  15. DiGiamberardino, L. & Couraud, J. Y. Nature 271, 170–172 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Wheeler, D. D., Boyarsky, L. L. & Brooks, W. H. J. Cell Physiol. 67, 141–148 (1966).

    Article  CAS  Google Scholar 

  17. Korr, I. M. & Appeltauer, G. S. L. Fedn Proc. 30, 665 (1971); Expl Neurol. 57, 713–724 (1977).

    Google Scholar 

  18. Hines, J. F. & Barwood, M. M. Brain Res. 125, 141–148 (1977).

    Article  CAS  Google Scholar 

  19. Oh, T. H., Chyu, J. Y. & Max, S. R. J. Neurobiol. 8, 469–476 (1977).

    Article  CAS  Google Scholar 

  20. Chubb, I. W. & Smith, A. D. Proc. R. Soc. B 191, 263–269 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Somogyi, P., Chubb, I. W. & Smith, A. D. Proc. R. Soc. B 191, 271–283 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Guth, L., Albers, R. W. & Brown, W. C. Expl Neurol. 10, 236–250 (1964).

    Article  CAS  Google Scholar 

  23. Fernandez, H. L. & Inestrosa, N. C. Nature 262, 55–56 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Inestrosa, N. C., Ramirez, B. U. & Gernandez, H. L. J. Neurochem. 28, 941–945 (1977).

    Article  CAS  Google Scholar 

  25. Kiauta, T., Brzin, M. & Dettbarn, W.-D. Expl Neurol. 56, 281–288 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SKAU, K., BRIMIJOIN, S. Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve. Nature 275, 224–226 (1978). https://doi.org/10.1038/275224a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275224a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing