Article | Published:

Model of the fine-grain component of martian soil based on Viking lander data

Nature volume 274, pages 859861 (31 August 1978) | Download Citation

Subjects

Abstract

The value of the sorbtional specific surface of the martian soil (from CO2 evolution in GEX (gas exchange experiments) of Viking craft) is more than an order of magnitude greater than the value of its geometrical specific surface (from granulometry). An hypothesis is therefore proposed here to explain the microporous structure of the soil grains. Absence of O2 and CO2 in GCMS (gas chromatography–mass spectrometry) (heating up to 500 °C) gives some indication of the closeness of the pores. The origin of such soil structure and the filling of pores with CO2 and O2 due to the effects of various forms of radiation are discussed. The similarity between kinetics in LR (labelled release) and GEX as well as their correspondence with the filtration curve for water vapour migrating through the soil sample suggest that both the formation and the diffusion of the gases are rapid processes. Displacement desorption by water vapour by simultaneous opening of the pores due to the Rebinder effect, is suggested as the natural mechanism for outgassing in the GEX and LR ‘Viking’ experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Science 194, 99–105 (1976).

  2. 2.

    Science 194, 819 (1976).

  3. 3.

    et al. Science 194, 1322 (1976).

  4. 4.

    et al. Nature 262, 24–27 (1976).

  5. 5.

    & Nature 265, 499 (1977).

  6. 6.

    et al. J. geophys. Res. 82, 4641 (1977).

  7. 7.

    et al. Nature 265, 110–114 (1977).

  8. 8.

    et al. Earth planet. Sci. Lett. 28, 33–36 (1975).

  9. 9.

    & Sov. J.: Vestnik, Mosk. Univ. Phis. Ast. 14, 112–115 (1972).

  10. 10.

    et al. Sov. J.: Vestnik Mosk. Univ. Phis. Astr. 18, 46–54; 18, 115–125 (1977).

  11. 11.

    Dokl. Akad. Nauk SSSR 174 (1976).

  12. 12.

    Phys. Earth planet. Inter. 15, 303 (1977).

  13. 13.

    & Nature 264, 241 (1976).

  14. 14.

    et al. Sov. J. Geohim. 1516–1523 (1974).

  15. 15.

    et al. J. Vac. Sci. Technol. 14, 550–555 (1977).

  16. 16.

    & Radiation Effects in Solids, Ch. 6, Wiley, New York, 1957).

  17. 17.

    in Physics of Sintering (Nauka, Moscow, 1967).

  18. 18.

    Proc. 13th A. MIT Conf. on Phys. Elect., 138 (1953).

  19. 19.

    J. Coll. Interf. Sci. 55, 358–369 (1976).

  20. 20.

    et al. Earth planet. Sci. Lett. 19, 90–96 (1973).

  21. 21.

    & Usp. fiz. Nauk 108, 3 (1972).

  22. 22.

    et al. Theory of Non-stationary Filtration of Liquids and Gases Nedra Moscow (1972).

  23. 23.

    & Methods of Theoretical Physics (McGraw Hill, New York, 1953).

  24. 24.

    et al. Science 194, 91–97 (1976).

  25. 25.

    Rev. mod. Phys. 15, 1–89 (1943).

  26. 26.

    , The Dynamical Character of Adsorption (Clarendon Oxford 1953).

  27. 27.

    et al. J. geophys. Res. 75, 7480 (1970).

  28. 28.

    & J. geophys. Res. 79, 3397–3402 (1974).

  29. 29.

    et al. Science 194, 87–91 (1976).

  30. 30.

    Sov. J. Kosmich. Issledovaniya 14, 406–417 (1976).

  31. 31.

    et al. Bull. Am. astr. Soc. 9, part 1 (1977).

Download references

Author information

Affiliations

  1. Space Research Institute, Academy of Sciences, 117810 Moscow, USSR

    • M. D. Nussinov
    • , Y. B. Chernyak
    •  & J. L. Ettinger

Authors

  1. Search for M. D. Nussinov in:

  2. Search for Y. B. Chernyak in:

  3. Search for J. L. Ettinger in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/274859a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.