Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality

Abstract

CLINICAL isolates of bacteria that have gained resistance to β-lactam antibiotics (penicillins, cephalosporins and related compounds) often arise by the acquisition of a plasmid that produces a β-lactamase1,2. An increase in β-lactamase activity has also been shown to cause resistance in some mutants isolated in the laboratory3. In other cases, β-lactamase activity is not the cause of resistance and, at least in Gram-negative bacteria, alteration of the cell envelope resulting in decreased penetration of the antibiotic to the targets responsible for lethality in the cytoplasmic membrane has been proposed3,4. For several groups of antibiotics resistance has been shown to occur by a decrease in the affinity of the target for lethality for the antibiotic5–9 but, although this mechanism has been suggested as a possible cause of resistance to β-lactam antibiotics, no examples have been reported. The lethality targets for β-lactam antibiotics in Escherichia coli have recently been identified and I report here the characterisation of a mutant that has gained resistance to some β-lactams by a decrease in the affinity of such a target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Richmond, M. H. & Curtis, N. A. C. Ann. N.Y. Acad. Sci. 235, 553–567 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rolinson, G. N. Proc. R. Soc. B 179, 403–410 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Boman, H. G., Nordstrom, K. & Normark, S. Ann. N.Y. Acad. Sci. 235, 569–586 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rodriguez, W. & Saz, A. R. Antimicrob. Ag. Chemother. 7, 788–792 (1975).

    Article  CAS  Google Scholar 

  5. Davis, B. D. & Maas, W. K. Proc. natn. Acad. Sci. U.S.A. 38, 775–785 (1952).

    Article  ADS  CAS  Google Scholar 

  6. Sirotnak, F. M., Donati, G. & Hutchison, D. J. J. biol. Chem. 239, 4298–4302 (1964).

    CAS  PubMed  Google Scholar 

  7. Babinet, C. & Condamine, H. C.r. hebd. Séanc. Acad. Sci., Paris 267, 231–232 (1968).

    CAS  Google Scholar 

  8. Ozaki, M., Mizushima, S. & Nomura, M. Nature 222, 333–339 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Gellert, M. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4772–4776 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Blumberg, P. M. & Strominger, J. L. Bact. Rev. 38, 291–335 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spratt, B. G. Science Prog. Lond. 65, 101–128 (1978).

    CAS  Google Scholar 

  12. Spratt, B. G. & Pardee, A. B. Nature 254, 516–517 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Spratt, B. G. Proc. natn. Acad. Sci. U.S.A. 72, 2999–3003 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Spratt, B. G., Jobanputra, V. & Schwarz, U. FEBS Lett. 79, 374–378 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Tamaki, S., Nakajima, S. & Matsuhashi, M. Proc. natn. Acad. Sci. U.S.A. 74, 5472–5476 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Suzuki, H., Nishimura, Y. & Hirota, Y. Proc. natn. Acad. Sci. U.S.A. 75, 664–668 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Spratt, B. G. Antimicrob. Ag. Chemother. 11, 161–166 (1977).

    Article  CAS  Google Scholar 

  18. Spratt, B. G., Jobanputra, V. & Zimmermann, W. Antimicrob. Ag. Chemother. 12, 406–409 (1977).

    Article  CAS  Google Scholar 

  19. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SPRATT, B. Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality. Nature 274, 713–715 (1978). https://doi.org/10.1038/274713a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274713a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing