Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyamine deficiency reduces the rate of DNA replication fork movement in Escherichia coli

Abstract

STUDIES with microbial mutants1–3 and animal cells4,5 have shown that spermidine and spermine , and perhaps their biosynthetic precursor putrescine, are required for optimal cell proliferation. Mutants of Escherichia coli blocked in the synthesis of putrescine provide an important tool with which to study the cellular function of these compounds. Previous work suggested a defect in DNA replication during starvation for polyamines; infection of spermidine-starved E. coli with bacteriophage T4 resulted in a submaximal rate of DNA accumulation6, while polyamine-limited growth of E. coli resulted in about twice as much DNA per cell as expected from the growth rate2. Also, increased cellular DNA has been seen during thymine-limited chromosome replication7 and in strains possessing mutations in the rep locus8. In both cases, this change in cellular composition seemed to be due to a reduced rate of replication fork movement and an increased number of forks per cell9,10. We show here that the abnormally high DNA content during polyamine limitation also seems to be the result of decreased replication fork velocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maas, W. K., Leifer, Z. & Poindexter, J. Ann. N.Y. Acad. Sci. 171, 957–967 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Morris, D. R. & Jorstad, C. J. Bact. 113, 271–277 (1973).

    CAS  PubMed  Google Scholar 

  3. Whitney, P. & Morris, D. R. J. Bact. (in the press).

  4. Fillingame, R. H., Jorstad, C. M. & Morris, D. R. Proc. natn. Acad. Sci. U.S A 72, 4042–4045 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Mamont, P. S. et al. Proc. natn. Acad. Sci. U.S.A. 73, 1626–2630 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Dion, A. S. & Cohen, S. S. J. Virol. 9, 423–427 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaritsky, A. & Pritchard, R. H. J. Bact. 114, 824–837 (1973).

    CAS  PubMed  Google Scholar 

  8. Lane, H. E. D. & Denhardt, D. T. J. Bact. 120, 805–814 (1974).

    CAS  PubMed  Google Scholar 

  9. Pritchard, R. H. & Zaritzky, A. Nature 226, 126–131 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Lane, H. E. D. & Denhardt, D. T. J. molec. Biol. 97, 99–112 (1975).

    Article  CAS  Google Scholar 

  11. Burton, K. Biochem. J. 62, 315–323 (1956).

    Article  CAS  Google Scholar 

  12. Cooper, S. & Helmstetter, C. E. J. molec. Biol. 31, 519–540 (1968).

    Article  CAS  Google Scholar 

  13. Lark, K. G. & Bird, R. E. Proc. natn. Acad. Sci. U.S.A. 54, 1444–1450 (1965).

    Article  ADS  CAS  Google Scholar 

  14. Neidhardt, F. C., Block, P. L. & Smith, D. F. J. Bact. 119, 736–747 (1974).

    CAS  PubMed  Google Scholar 

  15. Maas, W. K. Molec. Gen. Genet. 119, 1–9 (1972).

    Article  CAS  Google Scholar 

  16. Caro, L. G. & van Tubergen, R. P. J. Cell Biol. 15, 173–188 (1962).

    Article  CAS  Google Scholar 

  17. Caro, L. G. J. molec. Biol. 48, 329–338 (1970).

    Article  CAS  Google Scholar 

  18. Sueoka, N. & Yoshikawa, H. Genetics 52, 747–757 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheckman, R. et al. Proc. natn. Acad. Sci. U.S.A. 69, 2691–2695 (1972).

    Article  ADS  Google Scholar 

  20. Schekman, R., Weiner, A. & Kornberg, A. Science 186, 987–993 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Geider, K. & Kornberg, A. J. biol. Chem. 249, 3999–4005 (1974).

    CAS  Google Scholar 

  22. Weiner, J. H., Bertsch, L. & Kornberg, A. J. blol. Chem. 250, 1972–1980 (1975).

    CAS  Google Scholar 

  23. Christiansen, C. & Baldwin, R. L. J. molec. Biol. 115, 441–454 (1977).

    Article  CAS  Google Scholar 

  24. Gellert, M., Mizuuchi, K., O'Dea, M. & Nash, H. A. Proc. natn. Acad. Sci U.S.A. 73, 3872–3876 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Gellert, M., O'Dea, M., Itoh, T. & Tomizawa, J. Proc. natn. Acad. Sci. U.S.A. 73, 4474–4478 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Morris, D. R. & Hansen, M. T. J. Bact. 116, 588–592 (1973).

    CAS  PubMed  Google Scholar 

  27. Krokan, H. & Eriksen, A. Eur. J. Biochem. 72, 501–508 (1977).

    Article  CAS  Google Scholar 

  28. Knutson, J. C. & Morris, D. R. Biochim. biophys. Acta (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GEIGER, L., MORRIS, D. Polyamine deficiency reduces the rate of DNA replication fork movement in Escherichia coli. Nature 272, 730–732 (1978). https://doi.org/10.1038/272730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing