Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immunoglobulin light-chain structural gene sequences cloned in a bacterial plasmid

Abstract

IMMUNOGLOBULIN light-chain mRNA molecules and their cDNA transcripts have served as molecular probes in hybridisation experiments designed to quantify the number of immunoglobulin genes1–13 and to characterise the arrangement of these genes in the mammalian genome14,15. In other studies these mRNAs and cDNAs have been used as substrates for nucleotide sequence analyses to define the structural gene encoding immunoglobulin light chains16,17. Unfortunately, two central technical problems have developed during these studies. First, the immunoglobulin mRNA cannot be obtained in amounts sufficient for many experiments. For example, determination of the complete nucleotide sequence of this RNA remains difficult without more material. Second, immunoglobulin mRNA cannot be obtained as a homogeneous RNA completely free of other RNA species. These impurities have probably interfered with several hybridisation studies. In order to obtain a substrate for nucleotide sequence analysis as well as to provide a pure hybridisation probe we have cloned the DNA (cDNA) complementary to the immunoglobulin light-chain (kappa) mRNA from the mouse myeloma MOPC-149. The plasmid pCRl40 is shown here to contain sequences corresponding to 700 bases of the immunoglobulin mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faust, C. H., Diggelman, H. & Mach, B. Proc. natn. Acad. Sci. U.S.A. 71, 2491–2495 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Honjo, T., Packman, S., Swan, D., Nau, M. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 71, 3659–3663 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Leder, P., Honjo, T., Packman, S., Swan, D., Nau, M. & Norman, B. Proc. natn. Acad. Sci. U.S.A. 71, 5109–5114 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Stavnezer, J., Huang, R. C. C., Stavnezer, E. & Bishop, J. M. J. molec. Biol. 88, 43–63 (1974).

    Article  CAS  Google Scholar 

  5. Storb, U. Biochem. biophys. Res. Commun. 57, 31 (1974).

    Article  CAS  Google Scholar 

  6. Tonegawa, S., Steinberg, C., Dube, S. & Bernardini, A. Proc. natn. Acad. Sci. U.S.A. 71, 4027–4031 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Leder, P., Honjo, T., Swan, D., Packman, S., Nau, M. & Norman, B. in Molecular Approaches to Immunology (eds Smith, E. E. & Ribbons, D. W.) 173–188 (Academic, New York, 1976).

    Google Scholar 

  8. Rabbits, T. H., Jarvis, J. M. & Milstein, C. Cell 6, 5–12 (1975).

    Article  Google Scholar 

  9. Rabbits, T. H. & Milstein, C. Eur. J. Biochem. 52, 125 (1975).

    Article  Google Scholar 

  10. Farace, M.-G. et al. Proc. natn. Acad. Sci. U.S.A. 73, 727–731 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Honjo, T., Packman, S., Swan, D. & Leder, P. Biochemistry 15, 2780–2785 (1976).

    Article  CAS  Google Scholar 

  12. Honjo, T. et al. Biochemistry 15, 2775–2779 (1976).

    Article  CAS  Google Scholar 

  13. Tonegawa, S. Proc. natn. Acad. Sci. U.S.A. 73, 203–207 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Hozumi, N. & Tonegawa, S. Proc. natn. Acad. Sci. U.S.A. 73, 3628–3632 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Tonegawa, S., Hozumi, N., Matthyssens, G. & Schuller, R. Cold Spring Harb. Symp. quant. Biol. 41, 877–889 (1976).

    Article  Google Scholar 

  16. Brownlee, G. G., Cartwright, E. M., Cowan, N. J., Jarvis, J. M. & Milstein, C. Nature new Biol. 244, 236–240 (1973).

    Article  CAS  Google Scholar 

  17. Hamlyn, P. H., Gillam, S., Smith, M. & Milstein, C. Nucleic Acids Res. 4, 1123–1134 (1977).

    Article  CAS  Google Scholar 

  18. Higuchi, R., Paddock, G. V., Wall, R. & Salser, W. Proc. natn. Acad. Sci. U.S.A. 73, 3146–3150 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Ulrich, A. et al. Science 196, 1313–1319 (1977).

    Article  ADS  Google Scholar 

  20. Maniatis, T., Kee, S. G., Efstratiadis, A. & Kafatos, F. C. Cell 8, 163–182 (1976).

    Article  CAS  Google Scholar 

  21. Mach, B., Rougeon, F., Longacre, S. & Aellen, M.-F. Miami Winter Symp. 13, 219–235 (1977).

    CAS  Google Scholar 

  22. Rougeon, F. & Mach, B. Gene 1, 299–303 (1977).

    Article  Google Scholar 

  23. McReynolds, L. A. et al. J. biol. Chem. 252, 1840–1843 (1977).

    CAS  PubMed  Google Scholar 

  24. Roychoudhury, R., Jay, E. & Wu, R. Nucleic Acids Res. 3, 101–116 (1976).

    Article  CAS  Google Scholar 

  25. Hofstetter, H., Schambock, A. van den Berg, J. & Weissmann, C. Biochim. biophys. Acta 4S4, 587–591 (1976).

    Article  Google Scholar 

  26. Thomas, M., White, R. L. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 73, 2294–2298 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  28. Milstein, C. et al. Miami Winter Symp. 9, 131–148 (1975).

    CAS  Google Scholar 

  29. Packman, S., Aviv, H., Ross, J. & Leder, P. Biochem. biophys. Res. Commun. 49, 813–819 (1972).

    Article  CAS  Google Scholar 

  30. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 14, 560–564 (1977).

    Article  ADS  Google Scholar 

  31. Grunstein, M. & Hogness, D. C. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SEIDMAN, J., EDGELL, M. & LEDER, P. Immunoglobulin light-chain structural gene sequences cloned in a bacterial plasmid. Nature 271, 582–585 (1978). https://doi.org/10.1038/271582a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271582a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing