Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gating properties of acetycholine receptor in newly formed neuromuscular synapses

An Erratum to this article was published on 16 March 1978

Abstract

A FOREIGN motor nerve transplanted on to an adult innervated muscle will not form functional neuromuscular synapses1, yet several experimental procedures, such as denervation or muscle crush, change the properties of the muscle membrane so that a foreign nerve can establish ‘ectopic’ synapses in a normally endplate-free region of the muscle2–4. The nerve thereby induces a localised area of high acetylcholine receptor (AChR) density in the extrajunctional membrane5. Denervated or previously crushed muscle fibres already have, before synapse formation, low density AChRs in the extrajunctional membrane6,7. The extrajunctional AChRs are different in a number of respects from those in the junctional membrane8–11. The question is, therefore, whether the AChRs of an ectopic synapse have properties similar to junctional or to extrajunctional AChRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Elsberg, C. A. Science 45, 318–320 (1917).

    Article  ADS  CAS  Google Scholar 

  2. Fex, S. & Thesleff, S. Life Sci. 6, 635–638 (1967).

    Article  CAS  Google Scholar 

  3. Miledi, R. Nature 193, 281–282 (1962).

    Article  ADS  CAS  Google Scholar 

  4. Miledi, R. Nature 199, 1191–1192 (1963).

    Article  ADS  CAS  Google Scholar 

  5. Lomo, T. & Slater, C. R. J. Physiol., Lond. 258, 107 P (1976).

    Google Scholar 

  6. Miledi, R. J. Physiol., Lond. 151, 24–30 (1960).

    CAS  PubMed  Google Scholar 

  7. Katz, B. & Miledi, R. J. Physiol., Lond. 170, 389–396 (1964).

    Article  CAS  Google Scholar 

  8. Berg, D. K. & Hall, Z. W. Science 184, 473–475 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Chang, C. C. & Huang, M. C. Nature 253, 643–644 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Beranek, R. & Vyskocil, F. J. Physiol., Lond. 188, 53–66 (1976).

    Article  Google Scholar 

  11. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–699 (1972).

    Article  CAS  Google Scholar 

  12. Neher, E. & Sakmann, B. J. Physiol., Lond. 258, 705–730 (1976).

    Article  CAS  Google Scholar 

  13. Dreyer, F., Walther, Chr. & Peper, K. Pflügers Arch. ges. Physiol. 366 1–9 (1976).

    Article  CAS  Google Scholar 

  14. Sakmann, B. Pflügers Arch. ges. Physiol. 359, R89 (1975).

    Google Scholar 

  15. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  Google Scholar 

  16. Sytkowski, A. J., Vogel, Z. & Nirenberg, M. W. Proc. natn. Acad. Sci. U.S.A. 70, 270–274 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Ko, P. K., Anderson, M. J. & Cohen, M. W. Science 196, 540–542 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Colquhoun, D., Dionne, V. E., Steinbach, J. H. & Stevens, C. F. Nature 253, 204–206 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Mallart, A., Dreyer, F. & Peper, K. Pflügers Arch. ges. Physiol. 362, 43–47 (1976).

    Article  CAS  Google Scholar 

  20. Stevens, C. F. Biophys. J. 12, 1028–1047 (1972).

    Article  ADS  CAS  Google Scholar 

  21. Karnovsky, M. J. J. Cell Biol. 23, 217–222 (1964).

    Article  CAS  Google Scholar 

  22. Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 244, 385–407 (1975).

    Article  CAS  Google Scholar 

  23. Hartzell, H. C., Kuffler, S. W. & Yoshikami, D. J. Physiol., Lond. 251, 427–463 (1975).

    Article  CAS  Google Scholar 

  24. Anderson, M. J. & Cohen, M. W. J. Physiol., Lond. 268, 751–773 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BRENNER, H., SAKMANN, B. Gating properties of acetycholine receptor in newly formed neuromuscular synapses. Nature 271, 366–368 (1978). https://doi.org/10.1038/271366a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271366a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing