Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine-induced channels and transmitter release at human endplates

Abstract

MYASTHENIA gravis, a disease affecting the human neuromuscular junction, is thought to result from a postsynaptic defect, namely a reduction in the number of functional acetylcholine (ACh) receptors (reviewed in ref. 1). Thus at myasthenic end-plates the spontaneous miniature endplate potentials (m.e.p.ps) and impulse-evoked endplate potentials (e.p.ps) are reduced in amplitude2. Furthermore, the diminished number of α-bungarotoxin binding sites3,4 indicates a reduction in the number of ACh receptors in the postsynaptic membrane which leads to a reduced sensitivity to ACh5; and preliminary experiments with voltage noise (B. Katz, R. M. & J. Newsom-Davis, unpublished) suggested that the decrease in sensitivity does not involve changes in the characteristics of the channels. We have further examined the properties of channels opened by ACh at normal and myasthenic endplates as well as some characteristics of transmitter release in the two conditions. The experiments described here indicate that the single channel conductance and the mean channel life-time are similar in normal and myasthenic muscle membranes but that there are differences in the Ca-dependence of transmitter release from normal and myasthenic nerve terminals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grob, D. (ed.) Myasthenia Gravis Ann. N.Y. Acad. Sci. 274, (1976).

  2. Elmqvist, D., Hofmann, W. W., Kugleberg, J. & Quastel, D. M. J. J. Physiol., Lond. 174, 417–434 (1964).

    Article  CAS  Google Scholar 

  3. Fambrough, D. M., Drachman, D. B. & Satyamurti, S. Science 182, 293–295 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Green, D. P. L., Miledi, R., Perez de la Mora, M. & Vincent, A. Phil. Trans. R. Soc. Lond. B 270, 551–552 (1975).

    CAS  Google Scholar 

  5. Albuquerque, E. X., Rash, J. E., Mayer, R. F. & Satterfield, J. R. Exp. Neurol. 51, 536–563 (1976).

    Article  CAS  Google Scholar 

  6. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–700 (1972).

    Article  CAS  Google Scholar 

  7. Green, D. P. L., Miledi, R. & Vincent, A. Proc. R. Soc. Lond. B 189, 57–68 (1975).

    ADS  CAS  PubMed  Google Scholar 

  8. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 151–171 (1972).

    Article  CAS  Google Scholar 

  9. Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 226, 70–94 (1972).

    Article  Google Scholar 

  10. Kordas, M. J. Physiol., Lond. 224, 317–332 (1972).

    Article  CAS  Google Scholar 

  11. Katz, B. & Miledi, R. J. Physiol., Lond. 231, 549–574 (1973).

    Article  CAS  Google Scholar 

  12. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  Google Scholar 

  13. Hubbard, J. I., Jones, S. F. & Landau, E. M. J. Physiol., Lond. 196, 75–86 (1968).

    Article  CAS  Google Scholar 

  14. Cull-Candy, S. G., Lundh, H. & Thesleff, S. J. Physiol., Lond. 260, 177–203 (1976).

    Article  CAS  Google Scholar 

  15. Cooke, J. D., Okamoto, K. & Quastel, D. M. J. J. Physiol., Lond. 228, 459–497 (1973).

    Article  CAS  Google Scholar 

  16. Coërs, C. & Telerman-Toppet, N. Ann. N.Y. Acad. Sci. 274, 6–19 (1976).

    Article  ADS  Google Scholar 

  17. Engel, A. & Santa, T. Ann. N.Y. Acad. Sci. 183, 46–63 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Ito, Y. et al. Proc. R. Soc. Lond. B 192, 475–480 (1976).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CULL-CANDY, S., MILEDI, R. & TRAUTMANN, A. Acetylcholine-induced channels and transmitter release at human endplates. Nature 271, 74–75 (1978). https://doi.org/10.1038/271074a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing