Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of stanols in young lacustrine sediments

Abstract

STEROIDAL skeletons have been widely used as markers of the biological origin of organic material in ancient sediments1–7 and petroleum8. Nevertheless, the origin and fate of sterols (stanols and stenols) in recent sediments are poorly understood. Here the significant contribution of organism-derived stanols (saturated sterols) to lacustrine sediments is reported and the geochemical significance discussed. The presence of stanols in recent and ancient sediments, together with unaltered stenols (unsaturated sterols) commonly found in algae, has been reported9–12. In view of the rare abundance of stanols in living organisms, this occurrence has been used as evidence that partial reduction of naturally occurring stenols had taken place over geological time. Stanols have also been identified in contemporary lacustrine sediments13–17. Based on the conversion of 14C-cholesterol into 14C-cholestanol under in situ incubation, Gaskell and Eglinton17,18 proposed that such stanols in young sediments originate from stenols by microbiological reduction after deposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burlingame, A. L., Haung, P., Belsky, T. & Calvin, M. Proc. natn. Acad. Sci. U.S.A. 54, 1406–1412 (1965).

    Article  CAS  ADS  Google Scholar 

  2. Anderson, P. C., Gardner, P. M., Whitehead, E. V., Anders, D. E. & Robinson, W. E. Geochim. cosmochim. Acta 33, 1304–1306 (1969).

    Article  CAS  ADS  Google Scholar 

  3. Kimble, B. J. et al. Geochim. cosmochim. Acta 38, 1165–1181 (1974).

    Article  CAS  ADS  Google Scholar 

  4. Henderson, W., Wollrab, V. & Eglinton, G. in Advances in Organic Geochemistry (eds Schenck, P. A. & Havenaar, I.) 181–208 (Pergamon, Oxford, 1968).

    Google Scholar 

  5. Anders, D. E. & Robinson, W. E. Geochim. cosmochim. Acta 35, 661–678 (1971).

    Article  CAS  ADS  Google Scholar 

  6. Gallegos, E. J. Analyt. Chem. 47, 1523–1528 (1975).

    Google Scholar 

  7. Mulheirn, L. J. & Ryback, G. Nature 256, 301–302 (1975).

    Article  CAS  ADS  Google Scholar 

  8. Hills, I. R., Smith, G. W. & Whitehead, E. V. J. Inst. Petrol. 56, 127–137 (1970).

    CAS  Google Scholar 

  9. Attaway, D. & Parker, P. L. Science 169, 674–675 (1970).

    Article  CAS  ADS  Google Scholar 

  10. Mattern, G., Albrecht, P. & Ourisson, G. Chem. Commun. 1570–1571 (1970).

  11. Steel, G. & Henderson, W. Nature 238, 148–150 (1972).

    Article  CAS  ADS  Google Scholar 

  12. Ogura, K. & Hanya, T. Proc. Japan. Acad. 49, 201–204 (1973).

    Article  CAS  Google Scholar 

  13. Henderson, W., Reed, W. E. & Steel, G. in Advances in Organic Chemistry (eds von Gaertner, H. R. & Wehner, H.) 335–352 (Pergamon, Oxford, 1971).

    Google Scholar 

  14. Gaskell, S. J. & Eglinton, G. in Advances in Organic Geochemistry (eds Tissot, B. & Bienner, F.) 963–976 (Editions Technip, Paris. 1974).

    Google Scholar 

  15. Nishimura, M. & Koyama, T. Chem. Geol. 17, 229–239 (1976).

    Article  CAS  ADS  Google Scholar 

  16. Lee, C., Gagosian, R. B. & Farrington, J. W. Geochim. cosmochim. Acta 41, 985–992 (1977).

    Article  CAS  ADS  Google Scholar 

  17. Gaskell, S. J. & Eglinton, G. Geochim. cosmochim. Acta 40, 1221–1228 (1976).

    Article  CAS  ADS  Google Scholar 

  18. Gaskell, S. J. & Eglinton, G. Nature 254, 209–211 (1975).

    Article  CAS  ADS  Google Scholar 

  19. Nishimura, M. & Koyama, T. Geochim. cosmochim. Acta 41, 379–385 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Isabell, C., Masuo, M. & Ikekawa, N. Phytochemistry 15, 723–725 (1976).

    Article  Google Scholar 

  21. Nishimura, M. Geochim. cosmochim. Acta (in the press).

  22. Hayashi, H. Jap. Soc. Ecology Abstr. A. Meet. 23, 23 (1976).

    Google Scholar 

  23. Kurasawa, H. & Aoyama, K. Miscellaneus Rep. Res. Inst. Natur. Resource 63, 9–16 (1964).

    Google Scholar 

  24. Okino, T. Jap. Soc. Ecology Abstr. A. Meet. 23, 22 (1976).

    Google Scholar 

  25. Brooks, C. J., Henderson, W. & Steel, G. Biochim. biophys. Acta 296, 431–445 (1973).

    Article  CAS  Google Scholar 

  26. Sorokin, Y. I. Microbiologiya 3, 402–413 (1962).

    Google Scholar 

  27. Welte, D. H. in Advances in Organic Chemistry (eds Eglinton, G. & Murphy, M. T. J.) 261–264 (Springer-Verlag, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NISHIMURA, M. Origin of stanols in young lacustrine sediments. Nature 270, 711–712 (1977). https://doi.org/10.1038/270711a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270711a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing