Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionophore-mediated calcium influx effects on the post-synaptic muscle fibre membrane

Abstract

THE physiological chemotransmitter acetylcholine and its structural analogues such as carbamylcholine are capable of producing a sustained blockade of neuromuscular transmission when applied to the neuromuscular junction for prolonged periods. This neuromuscular blockade is not due to a depolarisation of the postsynaptic muscle fibre membrane but rather is generally ascribed to the inactivation, or ‘desensitisation’ of cholinergic receptor molecules in the postsynaptic membrane1,2. Various kinetic models involving agonist, and receptor molecules postulated to exist in different conformational states, have been proposed to account for the time course of the desensitisation process2,3. These models do not incorporate the acceleration of desensitisation by calcium ions4,5 and they do not predict correctly the observed effects of certain cholinergic antagonists on desensitisation. Consequently, alternative models for desensitisation have been proposed. In one of them calcium ions accumulate at the interior surface of the post-synaptic membrane and bind to the cholinergic receptors, thereby causing desensitisation by producing or sustaining some inactive receptor conformation6. We tested the model for desensitisation which involves internal calcium binding. This was accomplished by facilitating calcium ion flux across the post-synaptic membrane using the divalent cation ionophore A23187, while simultaneously producing a rapid desensitisation with iontophoretic application of carbamylcholine. Our results provide further evidence that calcium ions are a significant factor in the molecular mechanism of desensitisation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thesleff, S. Acta physiol. scand. 34, 218–231 (1955).

    Article  CAS  Google Scholar 

  2. Katz, B. & Thesleff, S. J. Physiol., Lond. 138, 63–80 (1957).

    Article  CAS  Google Scholar 

  3. Rang, H. P. & Ritter, J. M. Molec. Pharmac. 6, 357–382 (1970).

    CAS  Google Scholar 

  4. Manthey, A. A. J. gen. Physiol. 49, 963–975 (1966).

    Article  CAS  Google Scholar 

  5. Magazanik, L. G. & Vyskocil, F. J. Physiol., Lond. 210, 507–518 (1970).

    Article  CAS  Google Scholar 

  6. Nastuk, W. L. & Parsons, R. L. J. gen. Physiol. 56, 218–249 (1970).

    Article  CAS  Google Scholar 

  7. Reed, P. W. & Lardy, H. A. in The Role of Membranes in Metabolic Regulation (eds Mehlman, M. A. & Hanson, R. W.) 111–131 (Academic Press, New York, 1972).

    Book  Google Scholar 

  8. McLaughlin, S. & Eisenberg, M. A. Rev. Biophys. Bioengng 4, 335–366 (1975).

    Article  CAS  Google Scholar 

  9. Caswell, A. H. & Pressman, B. C. Biochem. biophys. Res. Commun. 49, 292–298 (1972).

    Article  CAS  Google Scholar 

  10. Scarpa, A., Baldassare, J. & Inesi, G. J. gen. Physiol. 60, 735–749 (1972).

    Article  CAS  Google Scholar 

  11. Hainut, K. & Desmedt, J. E. Nature 252, 407–408 (1974).

    Article  ADS  Google Scholar 

  12. Inoue, F. & Frank, G. B. Br. J. Pharmac. Chemother. 30, 186–193 (1967).

    Article  CAS  Google Scholar 

  13. Okada, K. Jap. J. Physiol. 17, 245–261 (1967).

    Article  CAS  Google Scholar 

  14. Devore, D. I. & Nastuk, W. L. Nature 253, 644–646 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Miledi, R. Proc. R. Soc. B183, 421–425 (1973).

    ADS  CAS  Google Scholar 

  16. Huxley, A. F. J. Physiol., Lond. 243, 1–43 (1974).

    Article  CAS  Google Scholar 

  17. Nastuk, W. L. Fedn Proc. 12, 102 (1953).

    Google Scholar 

  18. Wolfson, C. H. & Nastuk, W. L. Fedn Proc. 34, 404 (1975).

    Google Scholar 

  19. Hartzell, H. C., Kuffler, S. W. & Yoshikami, D. J. Physiol., Lond. 251, 427–463 (1975).

    Article  CAS  Google Scholar 

  20. Wolfson, C. H. thesis, Columbia Univ. (in preparation).

  21. Ebashi, S., Endo, M. & Ohtsuki, I. Q. Rev. Biophys. 2, 351–384 (1969).

    Article  CAS  Google Scholar 

  22. Martinez-Carrion, M. & Raftery, M. A. Biochem. biophys. Res. Commun. 55, 1156–1164 (1973).

    Article  CAS  Google Scholar 

  23. Cohen, J. B., Weber, M. & Changeux, J-P. Molec. Pharmac. 10, 904–932 (1974).

    CAS  Google Scholar 

  24. Chang, H. W. & Neumann, E. Proc. natn. Acad. Sci. U.S.A., 73, 3364–3368. (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DEVORE, D., NASTUK, W. Ionophore-mediated calcium influx effects on the post-synaptic muscle fibre membrane. Nature 270, 441–443 (1977). https://doi.org/10.1038/270441a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270441a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing