Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane

Abstract

THE purple membrane of Halobacterium halobium acts as a light-driven proton pump, producing a transmembrane proton gradient which is coupled to ATP synthesis1, and to phototaxis2 in the intact bacteria. It contains a single type of protein, bacteriorhodopsin (BR) which spans a 45-Å membrane. The isolated purple membranes are flat oval sheets with an average diameter of 0.5 µm (refs 3, 4). Bacteriorhodopsin contains a retinal molecule (all-trans and 13-cis)5 which is covalently bound via a protonated Schiff base to a lysine residue. It undergoes a photocycle described by the following scheme6–8: where proton ejection to the bulk solution occurs on the route ‘550’ → ‘412’ (refs 9,10), whereas protonation of the bacteriorhodopsin takes place parallel to the , process11. It has been reported that the reconstituted undergoes a cycle which involves the ‘X’ and the ‘610’ intermediates12. It was demonstrated that proton transfer is a vectorial process where the proton is ejected from one side of the purple membrane and reprotonation takes place on the other side13. We present here results on the effects of the specific hydration of the purple membrane on the relaxation times of ‘412’ and on the formation of the ‘660’ and ‘610’ intermediates. The results demonstrate that the full photocycle of bacteriorhodopsin can be observed in thin purple membrane layers even at the lowest hydration state and that the amount of absorbed water is rate limiting for the molecular process of the cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oesterhelt, D. & Stoeckenius, W. Proc. natn. Acad. Sci. U.S.A. 70, 2853–2857 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Hildebrand, E. & Dencher, N. Nature 257, 46–48 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Oesterhelt, D. & Stoeckenius, W. Nature new Biol. 233, 152–155 (1971).

    Article  Google Scholar 

  4. Henderson, R. & Unwin, P. N. T. Nature 257, 28–32 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Oesterhelt, D., Muntzen, M. & Schumann, L. Eur. J. Biochem. 40, 453–463 (1973).

    Article  CAS  Google Scholar 

  6. Kung, M. C., Devault, D., Hess, B. & Oesterhelt, D. Biophys. J. 15, 907–911 (1975).

    Article  CAS  Google Scholar 

  7. Lozier, H., Bogomolni, R. A. & Stoeckenius, W. Biophys. J. 15, 955–962 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Goldschmidt, C. R., Ottolenghi, M. & Korenstein, R. Biophys. J. 16, 839–843 (1976).

    Article  CAS  Google Scholar 

  9. Chance, B., Porte, M., Hess, B. & Oesterhelt, D. Biophys. J. 15, 907–911 (1975).

    Article  ADS  Google Scholar 

  10. Korenstein, R., Sherman, W. V. & Caplan, S. R. Biophys. Struct. Mechanism 2, 267–276 (1976).

    Article  CAS  Google Scholar 

  11. Oesterhelt, D. & Hess, B. Eur. J. Biochem. 37, 316–326 (1973).

    Article  CAS  Google Scholar 

  12. Sperling, W., Carl, P., Rafferty, C. N. & Dencher, N. A. Biophys. Struct. Mechanism. 3, 79–94 (1977).

    Article  CAS  Google Scholar 

  13. Racker, E. & Stoeckenius, E. J. biol. Chem. 249, 662–663 (1974).

    CAS  PubMed  Google Scholar 

  14. Wexler, A. & Hasegawa, S. J. Res. natn. Bur. Stand. 53, 19–26 (1954).

    Article  CAS  Google Scholar 

  15. Meinardus, G., Schwedt, D. Archs. Rat. Mech. 297–326 (1964).

  16. Rice, J. R. J. Soc. Industr. appl. Math. 10, 149–161 (1962).

    Article  Google Scholar 

  17. Hess, B. & Kuschmitz, D. FEBS Lett. 74, 20–24 (1977).

    Article  CAS  Google Scholar 

  18. Sherman, W. V., Korenstein, R. & Caplan, S. R. Biochim. biophys. Acta 430, 454–458 (1976).

    Article  CAS  Google Scholar 

  19. Eisenbach, M., Bakker, P., Korenstein, R. & Caplan, S. R. FEBS Lett. 71, 228–231 (1976).

    Article  CAS  Google Scholar 

  20. Lozier, R. H., Niederberger, W., Bogomolni, R. A., Hwang, S. & Stoeckenius, W. Biochim. biophys. Acta 440, 545–556 (1976).

    Article  CAS  Google Scholar 

  21. Lewin, S. in Displacement of Water and its Control of Biochemical Reactions 99–233 (Academic, London and New York, 1974).

    Google Scholar 

  22. Gutfreund, H. in Enzymes: Physical Principles (Wiley-Interscience, New York, 1972).

    Google Scholar 

  23. Happe, M. & Overath, P. Biochem. biophys. Res. Commun. 72, 1509–1511 (1976).

    Article  Google Scholar 

  24. Korenstein, R. & Hess, B. FEBS Lett. (in the press).

  25. Wald, G., Durell, J. & George, C. C. S. Science 111, 179–181 (1950).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KORENSTEIN, R., HESS, B. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 270, 184–186 (1977). https://doi.org/10.1038/270184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270184a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing