Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Involvement of DNA gyrase in bacteriophage T7 DNA replication

Abstract

NOVOBIOCIN and the related antibiotic coumermycin A1 (referred to as coumermycin) inhibit the supercoiling of circular double-stranded DNA catalysed by Escherichia coli DNA gyrase1. They also inhibit the replication of chromosomal DNA in E. coli cells2, and of circular double-stranded DNA in cell-free systems from E. coli3–6. The activity of DNA gyrase obtained from a coumermycin-resistant (cour) mutant and the replication of colicin El plasmid (Col El) DNA in a cell extract of the mutant are resistant to both drugs7. These results show that DNA gyrase is an essential component of these systems for the replication of the circular double-stranded DNA. It is interesting to examine whether DNA gyrase also has a role in replication of linear double-stranded DNA. The DNA of E. coli bacteriophage T7 is linear and double stranded8. Linear replicating molecules have been isolated from infected cells and it has been claimed that the phage DNA replicates as a linear form, at least in the first round of replication9. We show here that the replication of phage T7 DNA, including the first round, is inhibited by coumermycin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gellert, M., Mizuuchi, K., O'Dea, M. H. & Nash, H. A. Proc. natn. Acad. Sci. U.S.A. 73, 3872–3876 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Ryan, M. J. Biochemistry 15, 3769–3777 (1976).

    Article  CAS  Google Scholar 

  3. Staudenbauer, W. L. J. molec. Biol. 96, 201–205 (1975).

    Article  CAS  Google Scholar 

  4. Ryan, M. J. & Wells, R. D. Biochemistry 15, 3778–3782 (1976).

    Article  CAS  Google Scholar 

  5. Staudenbauer, W. L. Molec. gen. Genet. 145, 273–280 (1976).

    Article  CAS  Google Scholar 

  6. Sumida-Yasumoto, C., Yudelevich, A. & Hurwitz, J. Proc. natn. Acad. Sci. U.S.A. 73, 1887–1891 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Gellert, M., O'Dea, M. H., Itoh, T. & Tomizawa, J. Proc. natn. Acad. Sci. U.S.A. 73, 4474–4478 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Studier, F. W. J. molec. Biol. 11, 373–390 (1965).

    Article  CAS  Google Scholar 

  9. Dressler, D., Wolfson, J. & Magazin, M. Proc. natn. Acad. Sci. U.S.A. 69, 998–1002 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Sakakibara, Y. & Tomizawa, J. Proc. natn. Acad. Sci. U.S.A. 71, 802–806 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Denhardt, D. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

  12. Kelly, T. J., Jr, Thomas, C. A., Jr J. molec. Biol. 44, 459–475 (1969).

    Article  CAS  Google Scholar 

  13. Moses, R. E. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 67, 674–681 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Bachman, B. J., Low, K. B., Taylor, A. L. Bact. Rev. 40, 116–167 (1976).

    Google Scholar 

  15. Sadowski, P. D. & Kerr, C. J. Virol. 6, 149–155 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Strätling, W., Krause, E. & Knippers, R. Virology 51, 109–119 (1973).

    Article  Google Scholar 

  17. Lee, M. & Miller, R. C., Jr J. Virol. 14, 1040–1048 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fröhlich, B., Powling, A. & Knippers, R. Virology 65, 455–468 (1975).

    Article  Google Scholar 

  19. Ritchie, D., Thomas, C., MacHattie, L. & Wensink, P. J. molec. Biol. 23, 365–376 (1967).

    Article  CAS  Google Scholar 

  20. Tomizawa, J. & Owaga, T. Cold Spring Harb. Symp. quant. Biol. 33, 533–551 (1968).

    Article  CAS  Google Scholar 

  21. Strätling, W., Ferdinand, F. J., Krause, E. & Knippers, R. Eur. J. Biochem. 38, 160–169 (1973).

    Article  Google Scholar 

  22. Pacumbaba, R. P. & Center, M. S. J. Virol. 12, 855–861 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Helland, D. & Nyguard, A. P. FEBS Lett. 50, 13–16 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ITOH, T., TOMIZAWA, JI. Involvement of DNA gyrase in bacteriophage T7 DNA replication. Nature 270, 78–80 (1977). https://doi.org/10.1038/270078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing