Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dark noise in retinal bipolar cells and stability of rhodopsin in rods

Abstract

FOR the dark-adapted human observer, the absolute visual threshold has been estimated to be the effective absorption of 5–10 photons in an area covered by some 500 rods1. Although the quantum statistics of light enter as a factor which determines the frequency of seeing weak light stimuli1,2, it has been suggested that there is ‘noise’ in the visual system which ultimately limits the sensitivity of the eye3,4. Each rod in the human eye contains about 108 rhodopsin molecules, and if the ‘noise’ arises from events in the rod indistinguishable from the effects of light, there must be an extremely low probability of spontaneous change produced in any single rhodopsin molecule (or at sites within the rod disk membrane leading to an elementary voltage change in the rod). We have analysed voltage fluctuations in bipolar cells as a probe of rod activity in the dogfish retina. A component of the noise has been identified as photon noise, superimposed on dark noise arising from photon-like events. This part of the dark noise has a large temperature dependence (Q10 about 8), suggesting thermal isomerisation of rhodopsin. The rate constant, extrapolated to 37 °C, would correspond to one isomerisation in 30 s in a human rod, similar to estimates from the absolute threshold for human vision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hecht, S., Shlaer, S. & Pirenne, M. H. J. gen. Physiol. 25, 819–840 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rose, A. J. opt. Soc. Am. 38, 196–208 (1948).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Denton, E. J. & Pirenne, M. H. J. Physiol., Lond. 123, 417–442 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlow, H. B. J. opt. Soc. Am. 46, 634–639 (1956).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ashmore, J. F. & Falk, G. J. Physiol., Lond. 258, 39–40P (1976).

    Article  Google Scholar 

  6. Ashmore, J. F. & Falk, G. Nature, 263, 248–249 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ashmore, J. F. & Falk, G. J. Physiol., Lond. 269, 27–28P (1977).

    Google Scholar 

  8. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. J. Physiol., Lond. 242, 685–727 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Penn, R. D. & Hagins, W. A. Biophys. J. 12, 1073–1094 (1972).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hubbard, R. J. gen. Physiol. 42, 259–280 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hubbard, R. & Kropf, A. Proc. natn. Acad. Sci. U.S.A. 44, 130–139 (1958).

    Article  ADS  CAS  Google Scholar 

  12. Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes (McGraw Hill, New York, 1941).

  13. Hubbard, R. J. biol. Chem. 241, 1814–1818 (1966).

    CAS  PubMed  Google Scholar 

  14. St George, R. C. C. J. gen. Physiol. 35, 495–517 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dartnall, H. J. A. The Visual Pigments (Methuen, London, 1957).

    Book  Google Scholar 

  16. Stiles, W. S. in Transactions of the Optical Convention of the Worshipful Company of Spectacle Makers 97–107 (Spectacle Makers' Company, London, 1948).

    Google Scholar 

  17. Denton, E. J. & Pirenne, M. H. J. Physiol., Lond. 125, 181–207 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Vries, H. Progr. Biophys. biophys. Chem. 6, 207–264 (1955).

    Article  Google Scholar 

  19. Falk, G. & Fatt, P. in Handbook of Sensory Physiology 7 (ed. Dartnall, H. J. A.) 200–244 (Springer, Heidelberg, 1972).

    Google Scholar 

  20. Simon, E. J., Lamb, T. D. & Hodgkin, A. L. Nature, 256, 661–662 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Simon, E. J. & Lamb, T. D. in Vertebrate Photoreception (ed. Barlow, H. B. & Fatt, P.) (Academic, London, in the press).

  22. Schwartz, E. A. in Vertebrate Photoreception (ed. Barlow, H. B. & Fatt, P.) (Academic, London, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ASHMORE, J., FALK, G. Dark noise in retinal bipolar cells and stability of rhodopsin in rods. Nature 270, 69–71 (1977). https://doi.org/10.1038/270069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/270069a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing