Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synergism between anti-microtubule agents and growth stimulants in enhancement of cell cycle traverse

Abstract

COLCHICINE and other mitotic inhibitors have been used widely in cell cycle studies to produce synchronous cell populations1. This application is based on the ability of these drugs to inhibit mitosis by binding to tubulin and preventing microtubule (mitotic spindle) formation2. As well as inhibiting mitosis, these drugs modify the morphology and functions of cells during interphase. For example, colchicine inhibits the formation of cilia3, affects phagocytosis, the normal distribution of lysosomes4, and the synthesis and secretion of various proteins5–7 and alters the transport of certain nucleotides8. At very high concentrations (2–35×10−3 M) colchicine and colcemid retard the initiation of DNA synthesis and prolong the period of DNA synthesis9. We describe here the synergistic effects of colchicine and other anti-microtubule agents at lower concentrations (1–2×10−7 M) in the insulin- or serum-induced increase in cells moving from G1 to S phase. Our results suggest that microtubules have an important role in the regulation of DNA synthesis by growth factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stubblefield, E. & Klevecz, R. Expl Cell Res. 40, 660–664 (1965).

    Article  CAS  Google Scholar 

  2. Wilson, L., Bamburg, J. R., Mizel, S. B., Grisham, L. M. & Crestwell, K. Fedn Proc. 33, 158–166 (1974).

    CAS  Google Scholar 

  3. Stubblefield, E. & Brinkley, B. R. J. Cell Biol. 30, 645–652 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robbins, E. & Gonatas, N. K. J. Histochem. Cytochem. 12, 704–711 (1964).

    Article  CAS  PubMed  Google Scholar 

  5. Stein, O., Sanger, L. & Stein, Y. J. Cell Biol. 62, 90–103 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Le Marchand, Y., Patzelt, C., Assimacopoulos-Jeannet, F., Loten, E. G. & Jeanrenaud, B. J. clin. Invest. 53, 1512–1517 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rojkind, M. & Kershenohick, D. Biochim. biophys. Acta 378, 415–423 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Mizel, S. B. & Wilson, L. Biochemistry 11, 2573–2578 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Fitzgerald, P. H. & Brehaut, L. A. Expl Cell Res. 59, 27–31 (1970).

    Article  CAS  Google Scholar 

  10. Teng, M., Bartholomew, J. C. & Bissell, M. J. Proc. natn. Acad. Sci. U.S.A. 73, 3173–3177 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Van Obberghen, E., De Meyts, P. & Roth, J. J. biol. Chem. 251, 6844–6851 (1976).

    CAS  PubMed  Google Scholar 

  12. Hollenberg, M. D. Archs Biochem. Biophys. 171, 371–377 (1975).

    Article  CAS  Google Scholar 

  13. Carpenter, G. & Cohen, S. J. Cell Biol. 71, 159–171 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Yahara, I. & Edelman, G. M. Ann. N.Y. Acad. Sci. 253, 455–469 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Aubin, J. E., Carlsen, S. A. & Ling, V. Proc. natn. Acad. Sci. U.S.A. 72, 4516–4520 (1975).

    Article  ADS  CAS  Google Scholar 

  16. De Petris, S. Nature 250, 54–55 (1973).

    Article  ADS  Google Scholar 

  17. Edelman, G. M., Yahara, I. & Wang, J. L. Proc. natn. Acad. Sci. U.S.A. 70, 1442–1446 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Mintz, U. & Sachs, L. Proc. natn. Acad. Sci. U.S.A. 72, 2428–2432 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Raizada, M. K. & Perdue, J. F. J. biol. Chem. 251, 6445–6455 (1976).

    CAS  PubMed  Google Scholar 

  20. De Meyts, P., Bianco, R. & Roth, J. J. biol. Chem. 251, 1877–1888 (1976).

    CAS  Google Scholar 

  21. Nicolson, G. L. Biochim. biophys. Acta 451, 57–108 (1976).

    Article  Google Scholar 

  22. McGuire, R. F. & Barber, R. J. Sup Lamolec. Struct. 4, 259–269 (1976).

    Article  CAS  Google Scholar 

  23. Thomopoulos, P., Roth, J., Lovelace, E. & Pastan, I. Cell 8, 417–423 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham, D. D. & Ho, T. in Cold Spring Harbor Conferences on Cell Proliferation 2 (eds Reich, E., Rifkin, D. B. & Shaw, E. E.) 795–806 (Cold Spring Harbor Laboratory, 1975).

    Google Scholar 

  25. Crissman, H. A. & Steinkamp, J. A. J. Cell Biol. 59, 766–771 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TENG, MH., BARTHOLOMEW, J. & BISSELL, M. Synergism between anti-microtubule agents and growth stimulants in enhancement of cell cycle traverse. Nature 268, 739–741 (1977). https://doi.org/10.1038/268739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268739a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing