Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interferon suppresses the transition of quiescent 3T3 cells to a growing state

Abstract

PAUCKER, Cantell and Henle reported that crude mouse interferon preparations depressed multiplication of suspended L cells1. Since then evidence has accumulated indicating that interferon molecules which inhibit multiplication of virus also inhibit the growth of cells in culture2–9. Interferon was shown to suppress incorporation of 3H-thymidine into cellular DNA in various systems—for example, release from a double thymidine block in synchronised L929 cells10; activation of mouse spleen lymphocytes by phytohaemagglutinin (PHA) or allogeneic lymphocytes11; and in steady-state growth of cultured mouse leukaemia L 1210 cells12 in a chemostat. However, there has been no direct evidence to distinguish between the effect of interferon on the rate of initiation of DNA synthesis (entry into the S phase) and that on the rate of DNA synthesis in the S phase, and it is uncertain which step of the cell cycle is interfered by interferon. It is well known that most cells in cultures of confluent or serum starved mouse 3T3 stay in the early G1 or GO stage of the cell cycle, and an addition of serum to these quiescent cells stimulates their growth, leading to DNA synthesis and cell division13,14. We describe here a suppressive effect of interferon on the transition from the quiescent to the growing state in BALB/c 3T3 cells. The data indicate that interferon suppresses the initiation of DNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paucker, K., Cantell, K. & Henle, W. Virology 17, 324–334 (1962).

    Article  CAS  Google Scholar 

  2. Gresser, I., Brouty-Boyé, D., Thomas, M. T. & Macieira-Coelho, A. Proc. natn. Acad. Sci. U.S.A. 66, 1052–1058 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Ohwaki, M. & Kawade, Y. Acta virol. 16, 477–486 (1972).

    CAS  Google Scholar 

  4. McNeill, T. A. & Gresser, I. Nature new Biol. 244, 173–174 (1973).

    Article  CAS  Google Scholar 

  5. Knight, E., Jr J. Cell Biol. 56, 846–849 (1973).

    Article  CAS  Google Scholar 

  6. Gaffney, E. V., Picciano, P. T. & Grant, C. A. J. natn. Cancer Inst. 50, 871–878 (1973).

    Article  CAS  Google Scholar 

  7. Tan, Y. H. Nature 260, 141–143 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Knight, E., Jr Nature 262, 302–303 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Stewart, W. E., II, Gresser, I., Tovey, M. G., Bandu, M. T. & LeGoff, S. Nature 262, 300–302 (1976).

    Article  ADS  CAS  Google Scholar 

  10. O'Shaughnessy, M. V., Lee, S. H. S. & Rozee, K. R. Can. J. Microbiol. 18, 145–151 (1972).

    Article  CAS  Google Scholar 

  11. Lindahl-Magnusson, P., Leary, P. & Gresser, I. Nature new Biol. 273, 120–121 (1972).

    Article  Google Scholar 

  12. Tovey, M., Brouty-Boyé, D. & Gresser, I. Proc. natn. Acad. Sci. U.S.A. 72, 2265–2269 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Holley, R. W. & Kiernan, J. A. Proc. natn. Acad. Sci. U.S.A. 60, 300–304 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Dulbecco, R. Nature 227, 802–806 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Yamamoto, Y., Tsukui, K., Ohwaki, M. & Kawade, Y. J. gen. Virol. 23, 23–32 (1974).

    Article  CAS  Google Scholar 

  16. Aaronson, S. A. & Todaro, G. J. Science 162, 1024–1026 (1968).

    Article  ADS  CAS  Google Scholar 

  17. Brooks, R. F. J. Cell Physiol. 86, 369–378 (1975).

    Article  CAS  Google Scholar 

  18. Smith, J. A. & Martin, L. Proc. natn. Acad. Sci. U.S.A. 70, 1263–1267 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Brooks, R. F. Nature 260, 248–250 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Smith, J. A. & Martin, L. in Cell Cycle Controls (eds Padilla, G. M., Cameron, I. L. & Zimmerman, A.) 43–60 (Academic New York, 1974).

    Google Scholar 

  21. Holley, R. W. Nature 258, 487–490 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Hershko, A., Mamont, P., Shields, R. & Tomkins, G. E. Nature new Biol. 232, 206–211 (1971).

    Article  CAS  Google Scholar 

  23. Weber, J. M. & Stewart, R. B. J. gen. Virol. 28, 363–372 (1975).

    Article  CAS  Google Scholar 

  24. Suzuki, J., Akaboshi, T. & Kobayashi, S. Jap. J. Microbiol. 18, 449–456 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SOKAWA, Y., WATANABE, Y., WATANABE, Y. et al. Interferon suppresses the transition of quiescent 3T3 cells to a growing state. Nature 268, 236–238 (1977). https://doi.org/10.1038/268236a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268236a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing