Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of cyclic AMP pulses on adenylate cyclase and the phosphodiesterase inhibitor of D. discoideum

Abstract

STARVATION triggers the differentiation of Dictyostelium discoideum amoebae to aggregation competence. The differentiated cells orientate and migrate towards attracting centres, presumably consisting of amoebae which autonomously and rhythmically emit cyclic AMP as a chemotactic signal. Signals, emitted with a periodicity of 5–8 min (refs 1–3, 5), are presumably generated by rhythmic changes in adenylate cyclase activity6, levels of which dramatically increase during the first few hours before the expression of aggregation competence7,8. Cellular responses to external cyclic AMP are probably mediated by plasma membrane receptors9. When stimulated by a pulse of cyclic AMP, amoebae amplify10 and relay1,5,10,11 the chemotactic signal, which results in a coordinated aggregation. The decay of the chemotactic signal is determined by the activity of the extracellular cyclic AMP phosphodiesterase12,13 whose activity is modulated by an inhibitor excreted by cells during the early hours of starvation14. Cyclic AMP pulses have recently also been shown to regulate the differentiation of cells to aggregation competence15. To determine their mechanism of action, we examined the influence of applied cyclic AMP pulses on the two earliest biochemical events implicated in the control of cyclic AMP levels, the rise in adenylate cyclase activity and the appearance of the extracellular phosphodiesterase inhibitor. The results show that adenylate cyclase may exist in active or inactive forms. Applied cyclic AMP pulses seem to induce cell differentiation by activating the enzyme. They also are shown to repress the production of the phosphodiesterase inhibitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shaffer, B. M. Adv. Morph. 2, 109–182 (1962).

    Article  Google Scholar 

  2. Bonner, J. T. The Cellular Slime Molds 2nd edn (Princeton University Press, Princeton, 1967).

    Book  Google Scholar 

  3. Gerisch, G. Curr. Top. dev. Biol. 3, 157–197 (1968).

    Article  CAS  Google Scholar 

  4. Konijn, T. M., van de Meene, J. G. C., Bonner, J. T. & Barklay, D. S. Proc. natn. Acad. Sci. U.S.A. 58, 1152–1154 (1967).

    Article  CAS  ADS  Google Scholar 

  5. Robertson, A., Drage, D. J. & Cohen, M. H. Science 175, 333–334 (1972).

    Article  CAS  ADS  Google Scholar 

  6. Goldbeter, A. & Segel, L. Proc. natn. Acad. Sci. U.S.A. 74, 1543 (1977).

    Article  CAS  ADS  Google Scholar 

  7. Klein, C. FEBS Lett. 68, 125–128 (1976).

    Article  CAS  ADS  Google Scholar 

  8. Klein, C. FEMS Lett. 1, 17–20 (1977).

    Article  CAS  Google Scholar 

  9. Malchow, D. & Gerisch, G. Proc. natn. Acad. Sci. U.S.A. 71, 2423–2427 (1974).

    Article  CAS  ADS  Google Scholar 

  10. Roos, W., Nanjudiah, V., Malchow, D. & Gerisch, G. FEBS Lett. 53, 139–142 (1975).

    Article  CAS  Google Scholar 

  11. Shaffer, B. M. Nature 255, 549–552 (1975).

    Article  CAS  ADS  Google Scholar 

  12. Bonner, J. T., Barkley, D. S., Hall, E. M., Konijn, T. M., Mason, J. W., O'Keefe, G. & Wolfe, P. B. Devl Biol. 20, 72–87 (1969).

    Article  CAS  Google Scholar 

  13. Chang, Y. Y. Science 160, 57–59 (1968).

    Article  ADS  Google Scholar 

  14. Gerisch, G., Malchow, D., Riedel, V., Muller, E. & Every, M. Nature new Biol. 235, 90–93 (1972).

    Article  CAS  Google Scholar 

  15. Darmon, M., Brachet, P. & Pereira da Silva, L. Proc. natn. Acad. Sci. U.S.A. 72, 3163–3166 (1975).

    Article  CAS  ADS  Google Scholar 

  16. Gerisch, G., Malchow, D., Huesgen, A., Nanjundiah, V., Roos, W., Wick, U. & Hülser, D. in Proceedings of the 1975 ICN-UCLA Symposium on Developmental Biology (eds by McMahon, D. & Fox, C. F.) (1975).

    Google Scholar 

  17. Klein, C. & Darmon, M. Biochem. biophys. Res. Comm. 67, 440–447 (1975).

    Article  CAS  Google Scholar 

  18. Gerisch, G. & Hess, B. Proc. natn. Acad. Sci. U.S.A. 71, 2118–2122 (1974).

    Article  CAS  ADS  Google Scholar 

  19. Klein, C. & Brachet, P. Nature 254, 432–433 (1975).

    Article  CAS  ADS  Google Scholar 

  20. Roos, W. & Gerisch, G. FEBS Lett. 68, 170–172 (1976).

    Article  CAS  Google Scholar 

  21. Watts, D. J. & Ashworth, J. M. Biochem. J. 119, 171–194 (1970).

    Article  CAS  Google Scholar 

  22. Beug, H., Katz, F. E. & Gerisch, G. J. cell Biol. 56, 647–658 (1973).

  23. Juliani, M. H. & Klein, C. Biochim. biophys. Acta 497, 369–376 (1977).

    Article  CAS  Google Scholar 

  24. Lee, C. K. J. gen. Microbiol. 72, 457–471 (1972).

    Article  CAS  Google Scholar 

  25. Gerisch, G., Fromm, H., Huesgen, A. & Wick, U. Nature 255, 547–549 (1975).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KLEIN, C., DARMON, M. Effects of cyclic AMP pulses on adenylate cyclase and the phosphodiesterase inhibitor of D. discoideum. Nature 268, 76–78 (1977). https://doi.org/10.1038/268076a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268076a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing