Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bomb 14C and human radiation burden

Abstract

RADIOACTIVE fallout from nuclear weapon tests has resulted in a significant increase in mean radiation dose received by the world's population. While fission nuclides such as 137Cs and 90Sr are important sources of internal radioactivity, notable characteristics of artificial 14C production are (1) its long half-life (5,730±40yr1), (2) easy access via the food chain to all key molecules of body tissue, and (3) relatively long residence times in both stratosphere and troposphere of four and eight years respectively2 (cf. mean residence time of particulate nuclear debris in the troposphere 30 d3a). Although 14C emits a low-energy β-particle (βmax=156keV), its ease of incorporation in genetic material and the associated implications have provoked concern among several eminent scientists over artificial production of this radionuclide, even prior to the major testing period4–7. Recent data on levels of bomb 14C and residence times of carbon in the human body are now available8. Thus excess human radiation burdens from this radioisotope are evaluated in this article under the assumption that no radiation dose, however small, can be regarded as entirely harmless biologically. This assumption, albeit a major one, is still adopted for radiation hazard considerations in the absence of conclusive evidence otherwise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Godwin, H., Nature 195, 943–945 (1962).

    Article  ADS  Google Scholar 

  2. Walton, A., Ergin, M. & Harkness, D. D., J. geophys. Res. 75, 3089–3098 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (United Nations, New York, 1972); 1, 39–40, 41–42, & 95; 2, 252–258, & 282; 2 429.

  4. Pauling, L., Science 128, 1183–1186 (1958).

    Article  ADS  CAS  Google Scholar 

  5. Sakharov, A. D., Atomic Energy (U.S.S.R.) (Eng. trans.) 4, 757–762 (1958).

    Article  CAS  Google Scholar 

  6. Leipunsky, O. I., Atomic Energy (U.S.S.R.) (Eng. trans.) 3, 1413–1425 (1958).

    Article  Google Scholar 

  7. Totter, J. R., Zelle, M. R. & Hollister, H., Science 128, 1490–1495 (1958).

    Article  ADS  CAS  Google Scholar 

  8. Stenhouse, M. J. & Baxter, M. S., Nature 267, 828–832 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Gulliksen, S. & Nydal, R., Proc. 8th Int. Radiocarbon Conf. New Zealand 8, C58–C72 (1972).

    Google Scholar 

  10. Baxter, M. S. & Walton, A., Proc. R. Soc. Lond. A 318, 213–230 (1970).

    ADS  CAS  Google Scholar 

  11. Cerutti, P. A., Die Naturwissen 61, 51–59 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Painter, R. B., Current Topics in Radiation Research 7, 45–70 (North-Holland Publishing Co., Amsterdam 1970).

    Google Scholar 

  13. Cleaver, J. E. & Burki, H. J., Int. J. radn Biol. 26, 399–403 (1974).

    CAS  Google Scholar 

  14. Ormerod, M. & Stevens, U., Biochim. biophys. Acta 232, 72–82 (1971).

    Article  CAS  Google Scholar 

  15. Rasmussen, R. E., Reisner, B. L. & Painter, R. B., Int. J. radn Biol. 17, 285–290 (1970).

    CAS  Google Scholar 

  16. Krisch, R. E. & Zelle, M. R., Adv. radn Biol. 3, 177–213 (1969).

    Article  CAS  Google Scholar 

  17. Lee, W. R., Sega, G. A. & Bensin, E. S., Mutat. Res. 16, 195–201 (1972).

    Article  CAS  Google Scholar 

  18. Mays, C. W., Proc. symp. Biolog. Environ. Effects Low-Level Radn. 2, 373–384 (IAEA, Vienna, 1976).

    Google Scholar 

  19. Spiers, F. W., 3rd Int. Cong. Int. Radn. Prot. Ass., Washington DC 439–447 (1973).

  20. Tamers, M. A., Int. J. nucl Med. Biol. No. 1, 227–228 (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STENHOUSE, M., BAXTER, M. Bomb 14C and human radiation burden. Nature 267, 825–827 (1977). https://doi.org/10.1038/267825a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267825a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing