Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interference by bromodeoxyuridine with differentiation in a prokaryote

Abstract

ENDOSPORE formation in bacteria can be regarded as a primitive form of cellular differentiation as the mature spore has many features, both structural and biochemical, which distinguish it clearly from the growing cell. The extent to which bacterial sporulation can be used as a simple model for development in higher organisms depends on the similarity or otherwise of the control processes which influence cellular differentiation in both cases. It would thus seem important to draw as close an analogy as possible between prokaryotic and eukaryotic differentiating systems. With this in mind, the effect of 5-bromo-2′-deoxy-uridine (BUdR) on growth and sporulation in Bacillus subtilis has been investigated. When incorporated into the DNA of eukaryotic cells, BUdR (an analogue of thymidine, TdR) selectively affects processes associated with differentiated and embryogenesis, without significantly altering cell growth or gross RNA and protein synthesis1–3. The effects seem best explained by an alteration in transcription2,4,5, possibly caused by tighter binding of chromosomal proteins6–8. This may also be true for prokaryotes, because purified lac represser and catabolite gene activator protein from E. coli bind more tightly to BUdR-substituted DNA8. Sporulation in B. subtilis is controlled to a considerable extent by sequential activation of genes, many of which remain repressed during vegetative growth (for review see ref. 9). We report here that BUdR, at a concentration which leaves growth unaffected, markedly reduces the capacity of B. subtilis to sporulate. This effect is comparable with the known interference of this analogue with cellular differentiation in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holtzer, H. et al. Curr. Top. dev. Biol. 7, 229–256 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Rutter, W. J., Pictet, R. L. & Morris, P. W. A. Rev. Biochem. 42, 601–646 (1973)

    Article  CAS  Google Scholar 

  3. Guespin-Michel, J. F. et al. Expl Cell Res. 98, 184–190 (1976).

    Article  CAS  Google Scholar 

  4. Hill, B. T., Tsuboi, A. & Baserga, R. Proc. natn. Acad. Sci. U.S.A. 71, 455–459 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Jones, T. C. & Dove, W. F. J. molec. Biol. 64, 409–416 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Lapeyre, J. N. & Bekhor, I. J. molec. Biol. 89, 137–162 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, S.-Y., Lin, D. & Riggs, A. D. Nucleic Acids Res. 3, 2183–2191 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, S.-Y. & Riggs, A. D. Biochim. biophys. Acta 432, 185–191 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Piggot, P. J. & Coote, J. G. Bact. Rev. 40, 908–962 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sterlini, J. M. & Mandelstam, J. Biochem. J. 113, 29–37 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bishop, R. J. & Sueoka, N. J. Bact. 112, 870–876 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wake, R. G. & Baldwin, R. C. J. molec. Biol. 5, 201–216 (1962).

    Article  CAS  PubMed  Google Scholar 

  13. Schildkraut, C. L., Marmur, J. & Doty, P. J. molec. Biol. 4, 430–443 (1962).

    Article  CAS  PubMed  Google Scholar 

  14. Laird, C. D. & Bodmer, W. F. J. Bact. 94, 1277–1278 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dancer, B. & Mandelstam, J. J. Bact. 121, 406–410 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coote, J. G. J. Bact. 120, 1102–1108 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mandelstam, J., Sterlini, J. M. & Kay, D. Biochem. J. 125, 635–641 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawes, I. W., Kay, D. & Mandelstam, J. Nature 230, 635–641 (1971).

    Article  Google Scholar 

  19. Yamamoto, T. & Balassa, G. Molec. gen. Genet. 106, 1–13 (1969).

    Article  CAS  PubMed  Google Scholar 

  20. Bohin, J. P., Rigomier, D. & Schaeffer, P. J. Bact. 127, 934–940 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Glenn, A. R. & Coote, J. G. Biochem. J. 152, 85–89 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

COOTE, J. Interference by bromodeoxyuridine with differentiation in a prokaryote. Nature 267, 635–637 (1977). https://doi.org/10.1038/267635a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267635a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing