Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene dosage for isocitrate dehydrogenase in mouse embryos trisomic for chromosome 1

Abstract

IT is generally assumed that changes in chromosome number are reflected in gene dosage effects for loci located in the extra or missing chromosomes. Although such effects have been well substantiated in Drosophila1 data for mammalian aneuploidy are scarce. Quantitative gene dosage effects have been demonstrated for several X-linked enzymes in oocytes of mice with X-chromosome aneuploidy2,3 and for malic enzyme in mice with partial trisomy of chromosome 7 (ref. 4). In man, similar effects for superoxide dismutase-1 (W. W. Feaster, L. W. Kwok and C.J.E., unpublished and ref. 5), adenine phosphoribosyltransferase6, purine nucleoside phosphorylase7 and erythrocyte acid phosphatase8 have been observed in cells aneuploid for chromosomes 21, 16, 14 and 2, respectively. Aneuploidy for chromosome 21 also affects responsiveness to interferon9, and XYY cells have been claimed to have increased amounts of H–Y surface antigen10. Since the detection of more than 30 metacentric (Robertsonian translocation) chromosomes in wild and laboratory strains11,12 and the development of a mating scheme which utilises such translocations for the production of aneuploid embryos in relatively high frequencies13,14, the mouse has become particularly useful for gene dosage studies. We have used this system to demonstrate the dosage effect for supernatant isocitrate dehydrogenase (Id-1) which results from trisomy for chromosome 1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindsley, D. L. et al. Genetics 71, 157–184 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Epstein, C. J. Science 175, 1467–1468 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kozak, L. P., McLean, G. K. & Eicher, E. M. Biochem. Genet. 11, 41–47 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Eicher, E. M. & Coleman, D. L. Genetics (in the press).

  5. Sinet, P. M., Lavelle, F., Michelson, A. M. & Jerome, H. Biochem. biophys. Res. Commun. 67, 904–909 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Marimo, B. & Giannelli, F. Nature 256, 204–206 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. George, D. L. & Francke, U. Science 194, 851–852 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Magenis, R. E. et al. Proc. natn. Acad. Sci. U.S.A., 72, 4526–4530 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Epstein, L. B. & Epstein, C. J. J. Infect. Dis. 133, suppl. A56 (1976).

  10. Wachtel, S. S. et al. New Engl. J. Med. 293, 1070–1072 (1972).

    Article  Google Scholar 

  11. Gropp, A., Winking, H., Zech, L. & Müller, H. J. Chromosoma, Berl. 39, 265–288 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Capanna, E., Gropp, A., Winking, H., Noack, G. & Civitelli, M-V. Chromosoma, Berl. (in the press).

  13. Gropp, A., Kolbus, U. & Giers, D. Cytogenet. Cell Genet. 14, 42–62 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. White, B. J., Tjio, T. H., VandeWater, L. C. & Crandall, C. Cytogenet. Cell Genet. 13, 217–231 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Evans, E. P., Burtenshaw, M. D. & Ford, C. E. Stain Tech. 47, 229–234 (1972).

    Article  CAS  Google Scholar 

  16. Ford, C. E. in Edinburgh Symposium on the Genetics of the Spermatozoon (eds R. A. Beatty & S. Gluecksohn-Waelsch) 359–368 (Edinburgh, 1971).

    Google Scholar 

  17. Cattanach, B. M., Williams, C. E. & Bailey, H. Cytogenetics 11, 412–423 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Lowry, O. H. & Passonneau, J. V. A Flexible System of Enzymatic Analysis, 95 (Academic, New York, 1972).

    Google Scholar 

  19. Glock, G. E. & McLean, P. Biochem. J. 55, 400–408 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruddle, F. H. & Nichols, E. A. In Vitro 7, 120–131 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Henderson, N. S. J. exp. Zool. 158, 263–273 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

EPSTEIN, C., TUCKER, G., TRAVIS, B. et al. Gene dosage for isocitrate dehydrogenase in mouse embryos trisomic for chromosome 1. Nature 267, 615–616 (1977). https://doi.org/10.1038/267615a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267615a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing