Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Guanosine tetra- and pentaphosphate synthesis by bacterial stringent factor and eukaryotic ribosomes

Abstract

AMINO acid starvation of rel+ bacteria1 results in a rapid pleiotropic response involving the cessation of stable RNA synthesis, a decrease in the rate of nucleoside transport, an altered pattern of mRNA synthesis, inhibition of phospholipid synthesis and increased protein turnover. This stringent response2 is rapidly reversed when the amino acid starvation is relieved and is apparently mediated by two unusual nucleotides, guanosine 5′-diphosphate, 3′-diphosphate (ppGpp) and guanosine 5′-triphosphate, 3′-diphosphate (pppGpp)3. These nucleotides are synthesised on the ribosome in the presence of uncharged tRNA, ATP, GTP and an enzyme known as stringent factor3. Mutants which fail to exhibit the stringent response to amino acid starvation with the synthesis of ppGpp pppGpp are known as relaxed mutants4 and in Escherichia coli are mapped at three loci; relA (ref. 5), relB (ref. 6), and rplK (relC) (refs 7 and 8). The synthesis of ppGpp and pppGpp has also been observed in various prokaryotes including blue-green algae9. Here we demonstrate the ability of bacterial stringent factor to be stimulated by eukaryotic ribosomal preparations to synthesise both ppGpp and pppGpp.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cashel, M. & Gallant, J. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel, P.) 733–745 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  2. Stent, G. S. & Brenner, S. Proc. natn. Acad. Sci. U.S.A. 47, 2005–2014 (1961).

    Article  CAS  Google Scholar 

  3. Block, R. & Haseltine, W. A. in Ribosomes (eds Nomura, M., Tissières, A. & Lengyel P.) 747–761 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  4. Borek, E., Ryan, A. & Rockenbach, J. J. Bact. 69, 460–467 (1955).

    CAS  PubMed  Google Scholar 

  5. Alfoldi, L., Stent, G. S. & Clowes, R. C. J. molec. Biol. 5, 348–355 (1962).

    Article  CAS  Google Scholar 

  6. Lavallé, R. Bull. Soc. Chim. Biol. 47, 1567–1570 (1965).

    PubMed  Google Scholar 

  7. Friesen, J. D., Fiil, N. P., Parker, J. M. & Haseltine, W. A. Proc. natn. Acad. Sci. U.S.A. 71, 3465–3469 (1974).

    Article  CAS  Google Scholar 

  8. Parker, J. M., Watson, R. J. & Friesen, J. D. Molec. gen. Genet. 101, 227–244 (1976).

    Google Scholar 

  9. Carr, N. G. & Mann, N. Biochem. Soc. Trans. 3, 368–373 (1976).

    Article  Google Scholar 

  10. Hershko, A., Mamont, P., Shields, R. & Tomkins, G. M. Nature 232, 206–211 (1971).

    CAS  Google Scholar 

  11. Mamont, P. et al. Biochem. biophys. Res. Commun. 43, 1378–1384 (1972).

    Article  Google Scholar 

  12. Richter, D. FEBS Lett. 34, 291–294 (1973).

    Article  CAS  Google Scholar 

  13. Stanners, C. P. & Thompson, L. H. in Control of Proliferation in Animal Cells (eds Clarkson, B. & Baserga, R.) 191–203 (Cold Spring Harb. Laboratory, 1974).

    Google Scholar 

  14. Klein, C. FEBS Lett. 38, 149–152 (1974).

    Article  CAS  Google Scholar 

  15. Rhaese, H. J. FEBS Lett. 53, 113–118 (1975).

    Article  CAS  Google Scholar 

  16. Horváth, I., Zabos, P., Szabados, GY. & Bauer, P. FEBS Lett. 56, 179–183 (1975).

    Article  Google Scholar 

  17. Irr, J. D., Kaulenas, M. S., Unsworth, B. R. Cell 3, 249–253 (1974).

    Article  CAS  Google Scholar 

  18. Haseltine, W. A. & Block, R. Proc. natn. Acad. Sci. U.S.A. 70, 1564–1568 (1973).

    Article  CAS  Google Scholar 

  19. Pedersen, F. S. in Alfred Benzon Symp. IX, Control of Ribosome Synthesis (eds Kjeldgaard, N. O. & Maaløe, O.) 419–426 (Munlsogaard, 1976).

    Google Scholar 

  20. Thompson, L. H., Harkins, J. L. & Stanners, C. P. Proc. natn. Acad. Sci. U.S.A. 70, 3094–3098 (1973).

    Article  CAS  Google Scholar 

  21. Sy, V., Ogawa, Y. & Lipmann, F. Proc. natn. Acad. Sci. U.S.A. 70, 2145–2148 (1973).

    Article  CAS  Google Scholar 

  22. Christiansen, L. & Nierhaus, K. H. Proc. natn. Acad. Sci. U.S.A. 73, 1839–1843 (1976).

    Article  CAS  Google Scholar 

  23. Howard, G. A., Smith, R. L. & Gordon, J. J. molec. Biol. 106, 623–637 (1976).

    Article  CAS  Google Scholar 

  24. Beres, L. & Lucas-Lenard, J. Biochim. biophys. Acta 395, 80–90 (1975).

    Article  CAS  Google Scholar 

  25. Buckel, P. & Böck, A. Biochim. Biophys. Acta 324, 184–187 (1973).

    Article  CAS  Google Scholar 

  26. Kudrna, R. & Edlin, G. J. Bact. 121, 740–742 (1975).

    CAS  PubMed  Google Scholar 

  27. McMahon, D. & Langstroth, P. J. gen. Microbiol. 73, 239–250 (1972).

    Article  CAS  Google Scholar 

  28. Thammana, P., Buerk, R. R. & Gordon, J. FEBS Lett. 68, 187–190 (1976).

    Article  CAS  Google Scholar 

  29. Stanners, C. P. & Becker, H. J. cell. Physiol. 77, 31–42 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

POLLARD, J., PARKER, J. Guanosine tetra- and pentaphosphate synthesis by bacterial stringent factor and eukaryotic ribosomes. Nature 267, 371–373 (1977). https://doi.org/10.1038/267371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267371a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing