Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction

Abstract

ETHANOL potentiates the postsynaptic voltage response to acetylcholine at mammalian and amphibian neuromuscular junctions1–4, by prolonging the duration of the postsynaptic conductance change5–7. At these synapses, hyperpolarisation also increases the time constant of decay (τ) of end-plate currents8–14. Because of this voltage sensitivity, it was proposed15 that the rate-limiting reaction in the decay of end-plate currents involves the relaxation of membrane proteins, which undergo a change in dipole moment normal to the field direction as they change conformation. The magnitude and direction of the change in dipole moment then determines the effect of electric field on α, the reaction rate, α ( = τ−1) would be proportional to exp () (ref. 15) where V is membrane potential and μ the dipole moment change normal to the field direction. It has been suggested that the prolonged decay of end-plate currents produced by ethanol is due to increase by ethanol of the dielectric constant of the environment of receptors6, which lowers the rate of reactions involving a decrease in dipole moment16 and hence increases τ. In some arthropods, including crayfish, crab and locust, there is evidence that glutamate acts as an excitatory transmitter at neuromuscular junctions17,18. Also, the decay of excitatory postsynaptic currents in crayfish19 and locusts20 has the opposite voltage sensitivity to that found at amphibian neuromuscular junctions: hyper-polarisation reduces τ, suggesting that the rate-limiting reaction in the decay of conductance at these ‘glutamate’ synapses could be associated with a change in dipole moment which is opposite to that seen at amphibian neuromuscular junctions. Ethanol could then have an opposite effect at these two types of synapse, and depress synaptic transmission at glutamate synapses. We report here results of our study of spontaneous miniature excitatory junctional currents (MEJCs) in the crab, which confirm this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gage, P. W. J. Pharmac. exp. Ther. 150, 236–243 (1965).

    CAS  Google Scholar 

  2. Inoue, F. & Frank, G. B. Br. J. Pharmac. 30, 186–193 (1967).

    CAS  Google Scholar 

  3. Okada, K. Jap. J. Physiol. 17, 245–261 (1967).

    Article  CAS  Google Scholar 

  4. Okada, K. Jap. J. Physiol. 20, 97–111 (1970).

    Article  ADS  CAS  Google Scholar 

  5. McBurney, R. N. & Gage, P. W. Proc. Aust. physiol. pharmac. Soc. 3, 209 (1972).

    Google Scholar 

  6. Gage, P. W., McBurney, R. N. & Schneider, G. T. J. Physiol., Lond. 244, 409–429 (1975).

    Article  CAS  Google Scholar 

  7. Quastel, D. M. J. & Linder, T. M. in Molecular Mechanisms of Anaesthesia (ed. Fink, B. R.) 1, 157–165 (Raven, New York, 1975).

    Google Scholar 

  8. Takeuchi, A. & Takeuchi, N. J. Neurophysiol. 22, 395–411 (1959).

    Article  CAS  Google Scholar 

  9. Gage, P. W. & Armstrong, C. M. Nature 218, 363–365 (1968).

    Article  CAS  Google Scholar 

  10. Kordas, M. J. Physiol., Lond. 204, 493–502 (1969).

    Article  CAS  Google Scholar 

  11. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 151–171 (1972).

    Article  CAS  Google Scholar 

  12. Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 225, 79–94 (1972).

    Article  Google Scholar 

  13. Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 244, 385–407 (1975).

    Article  CAS  Google Scholar 

  14. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  Google Scholar 

  15. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 173–197 (1972).

    Article  CAS  Google Scholar 

  16. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes (McGraw-Hill, New York, 1941).

    Google Scholar 

  17. Kravitz, E. A., Slater, C. R., Takahashi, K., Bownds, N. D. & Grossfeld, R. M. in Excitatory Synaptic Mechanisms (eds Andersen, P. & Jansen, J.) 85–94 (Universitetsforlaget, Oslo, 1970).

    Google Scholar 

  18. Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  19. Dudel, J. Pflügers Arch. 352, 227–241 (1974).

    Article  CAS  Google Scholar 

  20. Anderson, C. R., Cull-Candy, S. G. & Miledi, R. Nature 261, 151–153 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Atwood, H. L., Hoyle, G. & Smyth, T. J. Physiol., Lond. 180, 449–482 (1965).

    Article  CAS  Google Scholar 

  22. Kordas, M. J. Physiol., Lond. 224, 317–332 (1972).

    Article  CAS  Google Scholar 

  23. Crawford, A. C. & McBurney, R. N. J. Physiol., Lond. 254, 47–48P (1976).

    Google Scholar 

  24. Crawford, A. C. & McBurney, R. N. J. Physiol., Lond. 258, 205–226 (1976).

    Article  CAS  Google Scholar 

  25. Barker, J. L. Brain Res. 92, 35–55 (1975).

    Article  ADS  CAS  Google Scholar 

  26. Chase, R. Comp. Biochem. Physiol. 506, 37–40 (1975).

    Google Scholar 

  27. Adams, D. J., Gage, P. W. & Hamill, O. P. Proc. Aust. Physiol. pharmac. Soc. 7, 71P (1976).

    Google Scholar 

  28. Faber, D. S. & Klee, M. R. Brain Res. 104, 347–353 (1976).

    Article  CAS  Google Scholar 

  29. Eidelberg, E. & Wooley, D. F. Archs int. Pharmacodyn. Ther. 185, 388–396 (1970).

    CAS  Google Scholar 

  30. Gage, P. W. & McBurney, R. N. J. Memb. Biol. 12, 247–272 (1973).

    Article  CAS  Google Scholar 

  31. Gage, P. W. & Hamill, O. P. Neurosci. Lett. 1, 61–65 (1975).

    Article  CAS  Google Scholar 

  32. Gage, P. W. & Hamill, O. P. Bri. J. Pharmac. 57, 263–272 (1976).

    Article  CAS  Google Scholar 

  33. Torda, T. A. & Gage, P. W. Anaesthesia and Intensive Care, 4, 199–202 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ADAMS, D., GAGE, P. & HAMILL, O. Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction. Nature 266, 739–741 (1977). https://doi.org/10.1038/266739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266739a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing