Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contractile activation in slow and twitch muscle fibres of the frog

Abstract

VERTEBRATE slow and twitch skeletal muscle fibres differ qualitatively in many respects and constitute functionally distinct motor systems1,2. Little is known, though, of the respective contractile activation properties. Since triad contacts between transverse (T) tubules and sarcoplasmic reticulum (SR), thought to be the pathway for activation of twitch fibres, are nearly identical in frog twitch and slow fibres3, similar processes would be expected to lead to Ca2+ release from the SR following T-tubule depolarisation in both muscle types. We describe here voltage-clamp studies of activating threshold contractions in slow and twitch fibres4,5. Activation kinetics in these physiologically very different fibre types are remarkably similar. Thus, a given membrane potential change may result in an equivalent amount of Ca2+ delivered to both slow and twitch myofibrils. Once activated, each fibre type would shorten at its characteristic velocity6, probably determined by the rate of actomyosin cross-bridge turnover7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peachey, L. D. in Biophysics of Physiological and Pharmacological Actions, (ed. Shanes, A. M.) 391–411, (American Association for the Advancement of Science New York, 1961).

    Google Scholar 

  2. Hess, A. Physiol. Rev. 50, 40–62 (1970).

    Article  CAS  Google Scholar 

  3. Franzini-Armstrong, C. J. Cell Biol. 56, 120–128 (1973).

    Article  CAS  Google Scholar 

  4. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol. 204, 207–230 (1969).

    Article  CAS  Google Scholar 

  5. Costantin, L. L. J. gen. Physiol. 63, 657–679 (1974).

    Article  CAS  Google Scholar 

  6. Costantin, L. L., Podolsky, R. J. & Tice, L. W. J. Physiol. 188, 261–271 (1967).

    Article  CAS  Google Scholar 

  7. Barany, M. J. gen. Physiol. 50, 197–216 (1967).

    Article  Google Scholar 

  8. Stefani, E. & Steinbach, A. B. J. Physiol. 203, 383–401 (1969).

    Article  CAS  Google Scholar 

  9. Podolsky, R. J. & Costantin, L. L. Fedn Proc. 23, 933–939 (1964).

    CAS  Google Scholar 

  10. Taylor, S. R., Rüdel, R. & Blinks, J. R. Fedn Proc. 34, 1379–1381 (1975).

    CAS  Google Scholar 

  11. Page, S. G. J. Cell Biol. 26, 477–497 (1965).

    Article  CAS  Google Scholar 

  12. Gilly, W. F. Tissue Cell 7, 203–210 (1975).

    Article  CAS  Google Scholar 

  13. Gilly, W. F. & Hui, C. S. Biophys. J. 17, 6a (1977).

    Google Scholar 

  14. Gilly, W. F. & Costantin, L. L. Fedn Proc. 33, 1260 (1974).

    Google Scholar 

  15. Hainaut, K. & Desmedt, J. E. Nature 252, 728–730 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Bailey, C. H. & Peachey, L. D. J. Cell Biol. 67, 15a (1975).

    Google Scholar 

  17. Bailey, C. H. & Peachey, L. D. 33rd Ann. Proc. Electron Microscopy Soc. Amer., 552 (1975).

  18. Bailey, C. H. & Peachey, L. D. 33rd Ann. Proc. Electron Microscopy Soc. Am. 554 (1975).

  19. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Franzini-Armstrong, C. Fedn Proc. 34, 1382–1389 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GILLY, W., HUI, C. Contractile activation in slow and twitch muscle fibres of the frog. Nature 266, 186–188 (1977). https://doi.org/10.1038/266186a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266186a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing