Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased optical transparency associated with excitation–contraction coupling in voltage-clamped cut skeletal muscle fibres

Abstract

CONTRACTION of a skeletal muscle fibre is triggered by depolarisation of its transverse (T-) tubules1, which occurs physiologically with the spread of an action potential into the T-system2. The T-tubule depolarisation gives rise to calcium release3,4 from the adjacent but separate5,6 sarcoplasmic reticulum (SR). The released calcium binds to troponin, removing the inhibition of actin–myosin interaction and enabling contractile activity7. Little is known about the nature of the T-tubule–SR interaction. It has been suggested that movement of charged molecules or dipoles in the T-tubule membrane is the initial voltage-sensitive step in the chain of events leading from T-tubule depolarisation to SR calcium release8, and membrane charge displacement currents which may reflect such movements have been observed and characterised8–10. We report here a study of subsequent changes which may be related to calcium release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, A. F. & Taylor, R. E. J. Physiol., Lond. 144, 426–441 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costatin, L. L. J. gen. Physiol. 55, 703–715 (1970).

    Article  Google Scholar 

  3. Jöbsis, F. F. & O'Connor, M. J. Biochem. biophys. Res. Commun. 25, 246–252 (1966).

    Article  PubMed  Google Scholar 

  4. Taylor, S. R., Rüdell, R. & Blinks, J. R. Fedn Proc. 34 1379–1381 (1975).

    CAS  Google Scholar 

  5. Franzini-Armstrong, C. J. Cell Biol. 49, 196–203 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franzini-Armstrong, C. Fedn Proc. 34, 1382–1389 (1975).

    CAS  Google Scholar 

  7. Ebashi, S., Endo, M. & Ohtsuki, I. Q. Rev. Biophys. 2, 351–384 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chandler, W. K., Rakowski, R. F. & Schneider, M. F. J. Physiol., Lond. 254, 245–283 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adrian, R. H. & and Almers, W. J. Physiol., Lond. 254, 339–360 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, D. K. J. Physiol., Lond. 108, 292–302 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barry, W. H. & Carnay, L. D. Am. J. Physiol. 217, 1425–1430 (1969).

    CAS  PubMed  Google Scholar 

  13. Sandow, A. M.V.C. Quart. 2, 82–89 (1966).

    Google Scholar 

  14. Mulieri, L. A. J. Physiol., Lond. 223, 333–354 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hodgkin, A. L., Huxley, A. F. & Katz, B. J. Physiol., Lond. 116, 424–448 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kovács, L. & Schneider, M. F. Biophys. J. 17, 5a (1977).

    Google Scholar 

  17. Costantin, L. L. J. gen. Physiol. 63, 657–674 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandler, W. K. & Schneider, M. F. J. gen. Physiol. 67, 165–184 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Adrian, R. H., Chandler, W. K. & and Hodgkin, A. L. J. Physiol., Lond. 204, 207–230 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbott, B. C. & Ritchie, J. M. J. Physiol., Lond. 113, 330–335 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hill, D. K. J. Physiol., Lond. 199, 637–684 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bezanilla, F. & Horowicz, P. J. Physiol., Lond. 246, 709–735 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oetliker, H., Baylor, S. M. & Chandler, W. K. Nature 257, 693–696 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Baylor, S. M. & and Oetliker, H. Nature 253, 97–101 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KOVÁCS, L., SCHNEIDER, M. Increased optical transparency associated with excitation–contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature 265, 556–560 (1977). https://doi.org/10.1038/265556a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265556a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing