Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinetics of reaction in calcium-activated skinned muscle fibres

Abstract

A PROCEDURE reducing the diffusion-limited equilibration time of the Ca2+ concentration within skinned muscle fibres1 activated from outside has been used to investigate the kinetics and the stoichiometry of Ca2+ in the process of tension development in frog skeletal muscle. The diffusion problems are minimised by activating (or relaxing) the myofibrillar preparation in a solution with a very high Ca2+-buffering capacity compared to that of the fibre as a whole2,3 (solution in the interfilament space, sarcoplasmic reticulum, myofibrillar proteins);by using only thin fibres; and by using an efficient pH buffer (TES: N-Tris (hydroxymethyl) methyl-2-aminoethanesulphonic acid) and a high ATP concentration in conjunction with a powerful ATP regenerative system (creatine phosphate (CP) and creatine kinase (CK)). Great care has been taken in preparing bathing solutions with similar concentrations of monovalent metallic cations ( 150 mM), protons (pH 7.1 )4 and [Mg2+](1 mM) (refs 5 and 6) to those in vivo. For this purpose, the apparent binding constants of the various ligands for Ca2+ and Mg2+ have been measured by a pH metric method (Table 1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Natori, R., Jikeikai med. J., 1, 119–126 (1954).

    Google Scholar 

  2. Ashley, C. C., and Moisescu, D. G., J. Physiol., Lond., 233, 8–9P (1973).

    Google Scholar 

  3. Moisescu, D. G., thesis, Univ. Bristol (1974).

  4. Caldwell, P. C., J. Physiol., Lond., 142, 22–62 (1958).

    Article  CAS  Google Scholar 

  5. Endo, M., Proc. Japan Acad., 51, 479–484 (1975).

    Article  CAS  Google Scholar 

  6. Ashley, C. C., and Ellory, J. C., J. Physiol., Lond., 226, 653–674 (1972).

    Article  CAS  Google Scholar 

  7. Sillén, L. G., and Martell, A. E., Stability Constants of Metal-ion Complexes (The Chemical Society, Special Publication No. 17, London, 1964).

    Google Scholar 

  8. Sillén, L. G., and Martell, A. E., Stability Constants of Metal-ion Complexes Supplement 1 (The Chemical Society, Special Publication No. 25, London, 1970).

    Google Scholar 

  9. Hill, A. V., Proc. R. Soc., B 136, 399–420 (1949).

    ADS  CAS  Google Scholar 

  10. Huxley, A. F., and Simmons, R. M., Nature, 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Huxley, A. F., and Simmons, R. M., Cold Spring Harb. Symp. quant. Biol., 37, 660–680 (1972).

    Google Scholar 

  12. Endo, M., Tanaka, M., and Ogawa, Y., Nature, 288, 34–36 (1970).

    Article  ADS  Google Scholar 

  13. Anderegg, G., Helv. Chim. Acta, 47, 1801–1814 (1964).

    Article  CAS  Google Scholar 

  14. Ashley, C. C., Moisescu, D. G., and Rose, R. M., J. Physiol., Lond., 241, 104–106P (1974).

    Google Scholar 

  15. Julian, F. J., J. Physiol., Lond., 218, 117–146 (1971).

    Article  CAS  Google Scholar 

  16. Hellam, D. C., and Podolsky, R. J., J. Physiol., Lond., 200, 807–819 (1969).

    Article  CAS  Google Scholar 

  17. Endo, M., Nature new Biol., 237, 211–213 (1972).

    Article  CAS  Google Scholar 

  18. Moisescu, D. G., Ashley, C. C., and Campbell, A. K., Biochim. biophys. Acta, 396, 133–140 (1975).

    Article  CAS  Google Scholar 

  19. Ashley, C. C., and Moisescu, D. G., Nature new Biol., 237, 208–211 (1972).

    Article  CAS  Google Scholar 

  20. Rodiguin, N. M., and Rodiguina, E. N., Consecutive Chemical Reactions, 42–46 (Van Nostrand, Princeton, 1964).

    Google Scholar 

  21. Lehman, W., and Szent-Györgyi, A. G., J. gen. Physiol., 66, 1–30 (1975).

    Article  CAS  Google Scholar 

  22. Hazelgrove, J. C., Cold Spring Harb. Symp. quant. Biol., 37, 341–352 (1972).

    Article  Google Scholar 

  23. Werber, M. M., Gaffin, S. L., and Oplatka, A., J. Mechanochem. Cell Motility, 1, 91–96 (1972).

    CAS  Google Scholar 

  24. Morimoto, K., and Harrington, W. F., J. molec. Biol., 83, 83–97 (1974).

    Article  CAS  Google Scholar 

  25. Bremel, R. D., and Weber, A., Nature new Biol., 238, 97–101 (1972).

    Article  CAS  Google Scholar 

  26. Potter, J. D., and Gergely, J., J. biol Chem., 250, 4628–4633 (1975).

    CAS  PubMed  Google Scholar 

  27. Moisescu, D. G., and Pusch, H., Pflügers Arch., 355, R-122 (1975).

    Google Scholar 

  28. Taqui Khan, M. M., and Martell, A. E., J. Am. chem. Soc., 88, 668–671 (1966).

    Article  Google Scholar 

  29. Phillips, R. C., George, P., and Rutman, R. J., J. Am. chem. Soc., 88, 2631–2640 (1966).

    Article  CAS  Google Scholar 

  30. Porzehl, H., Caldwell, P. C., and Rüegg, J. C., Biochim. biophys. Acta, 79, 581–591 (1964).

    Google Scholar 

  31. Good, N. E., et al., Biochemistry, 5, 467–477 (1966).

    Article  CAS  Google Scholar 

  32. Smith, R. M., and Alberty, R. A., J. Am. chem. Soc., 78, 2376–2380 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MOISESCU, D. Kinetics of reaction in calcium-activated skinned muscle fibres. Nature 262, 610–613 (1976). https://doi.org/10.1038/262610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing