Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hybrid molecules and the superiority of the heterozygote

Abstract

POPULATION geneticists have never agreed on the which overdominance of fitness—that is, the which the fitness of the heterozygote exceeds the fitness.of both homozygotes—is responsible for the maintenance of genetic variability in populations1. It has been proposed2–4 that heteromultimers formed by random association of enzyme subunits coded by two different alleles provide a molecular basis for overdominance. This hypothesis stems from the observation that heteromultimers often differ from homomultimers in a number of aspects5, sometimes restoring enzymatic activity when both homozygotes lacked such activity2. Clearly, the crucial step towards associating (or disassociating) observations of this type with overdominance of fitness must be taken if we were to test the hypothesis that heteromultimers per se are responsible for the high amounts of variation observed in populations. I argue here that the enormous amounts of electrophoretic data now available exclude this hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewontin, R. C., The Genetic Basis of Evolutionary Change (Columbia University, New York and London, 1974).

    Google Scholar 

  2. Fincham, J. R. S., Gene Complementation (Benjamin, Amsterdam, 1966).

    Google Scholar 

  3. Fincham, J. R. S., Heredity, 28, 387–391 (1972).

    Article  CAS  Google Scholar 

  4. Schwartz, D., and Laughner, W. J., Science, 166, 626–627 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Singh, R. S., Hubby, J. L., and Lewontin, R. C., Proc. natn. Acad. Sci. U.S.A., 71, 1808–1810 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering, second ed. (Wiley, New York, London and Sydney, 1965).

    MATH  Google Scholar 

  7. Harris, H., Hopkinson, D. A., and Robson, E. B., Ann. Hum. Genet., 37, 237–253 (1974).

    Article  CAS  Google Scholar 

  8. Harris, H., and Hopkinson, D. A., Ann. Hum. Genet., 36, 9–20 (1972).

    Article  CAS  Google Scholar 

  9. Hopkinson, D. A., Peters, J., and Harris, H., Ann. Hum. Genet., 37, 477–484 (1974).

    Article  CAS  Google Scholar 

  10. Beutler, E., West, C., and Beutler, B., Ann. Hum. Genet., 38, 163–169 (1974).

    Article  CAS  Google Scholar 

  11. Chen, S. H., Anderson, J., Giblett, E. R., and Lewis, M., Am. J. Hum. Genet., 26, 73–77 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kompf, J., Bissbort, S., Gussmann, S., and Ritter, H., Humangenetik, 27, 141–143 (1975).

    CAS  PubMed  Google Scholar 

  13. Beckman, G., and Christodoulou, C., Hum. Hered., 24, 294–299 (1974).

    Article  CAS  Google Scholar 

  14. Teng, Y. S., Anderson, J. E., and Giblett, E. R., Am. J. Hum. Genet., 27, 492–497 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Turner, M. B., Turner, V. S., Beratis, N. G., and Hirschhorn, Am. J. Hum. Genet., 27, 651–661 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Povey, S., Corney, G., and Harris, H., Ann. Hum. Genet., 38, 407–415 (1975).

    Article  CAS  Google Scholar 

  17. Slaughter, C. A., Hopkinson, D. A., and Harris, H., Ann. Hum. Genet., 39, 193–202 (1975).

    Article  CAS  Google Scholar 

  18. Hopkinson, D. A., Coppock, J. S., Munlemann, M. F., and Edwards, Y. H., Ann. Hum. Genet., 38, 155–162 (1974).

    Article  CAS  Google Scholar 

  19. Merritt, A. D., and Bixler, D., Proc. fourth Int. Congr. Hum. Genet., 120–121 (Excerpta Medica, Int. Congr. Ser. No. 233, Amsterdam, 1971).

  20. Ward, J. C., Merritt, A. D., and Bixler, D., Am. J. Hum. Genet., 23, 403–409 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B., Studies in Genetics (Univ. Texas Publ. No. 7103, 1971).

    Google Scholar 

  22. Avise, J. C., and Selander, R. K., Evolution, 26, 1–19 (1972).

    Article  Google Scholar 

  23. Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F., and Perez-Salas, S., Genetics, 77, 343–384 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gottlieb, L. D., Evolution, 29, 213–225 (1975).

    Article  CAS  Google Scholar 

  25. Babbel, G. R., and Selander, R. K., Evolution, 28, 619–630 (1974).

    Article  Google Scholar 

  26. Gillespie, J. H., and Langley, C. H., Genetics, 76, 837–848 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson, G. B., Science, 184, 28–37 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Zouros, E., Nature, 254, 446–448 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Zouros, E., Krimbas, C. B., Tsakas, S., and Loukas, M., Genetics, 78, 1233–1244 (1974).

    Google Scholar 

  30. Zouros, E., Evolution, 27, 601–621 (1974).

    Google Scholar 

  31. Tsuno, K., Genetics, 80, 585–594 (1975).

    PubMed Central  Google Scholar 

  32. Zouros, E., and Krimbas, C. B., Genet. Res., 14, 249–258 (1969).

    Article  CAS  Google Scholar 

  33. Berger, E. M., Biol. Bull., 145, 83–90 (1973).

    Article  Google Scholar 

  34. Smith, M. H., Selander, R. K., and Johnson, W. E., J. Mamm. Genet., 54, 1–13 (1973).

    Article  CAS  Google Scholar 

  35. Bernstein, S. C., Thockmorton, L. H., and Hubby, J. L., Proc. natn. Acad. Sci. U.S.A., 70, 3928–3931 (1973).

    Article  ADS  CAS  Google Scholar 

  36. Singh, R. S., Hubby, J. L., and Thockmorton, L. H., Genetics, 80, 637–650 (1975).

    PubMed Central  Google Scholar 

  37. Prakash, S., Lewontin, R. C., and Hubby, J. L., Genetics, 61, 841–858 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Burns, M. J., and Johnson, F. M., Science, 156, 93–96 (1967).

    Article  ADS  CAS  Google Scholar 

  39. Burns, M. J., and Johnson, F. M., Proc. natn. Acad. Sci. U.S.A., 68, 34–37 (1971).

    Article  ADS  CAS  Google Scholar 

  40. Donald, L. J., and Robson, E. B., Ann. Hum. Genet., 37, 303–313 (1968).

    Article  Google Scholar 

  41. Wallace, K., and Yarbrough, K. M., Proc. natn. Acad. Sci. U.S.A., 57, 645–649 (1967).

    Article  Google Scholar 

  42. Kojima, K., and Yarbrough, K. M., Proc. natn. Acad. Sci. U.S.A., 57, 645–649 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZOUROS, E. Hybrid molecules and the superiority of the heterozygote. Nature 262, 227–229 (1976). https://doi.org/10.1038/262227a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262227a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing