Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of yeast RNA polymerases

A Corrigendum to this article was published on 01 July 1976

Abstract

DNA-DEPENDENT RNA polymerase activities in eukaryotic cells change during developmental1,2 and physiological transitions3–8. Some changes occur rapidly and in the absence of protein synthesis. They presumably involve modulation of the activity of pre-existing RNA polymerase molecules rather than alterations of the rate of synthesis or degradation of these molecules. This modulation of polymerase activity could be a consequence of covalent modification of enzyme subunits, the rapid turnover of a protein factor required for catalysis, alteration of the template properties of the chromatin or some combination of these. The first possibility is attractive. The activity of many enzymes is controlled in this manner9. Cycles of phosphorylation and dephosphorylation regulate the activity of the enzymes involved in glycogen metabolism (reviewed in refs 9 and 10). Lee et al.11 observed an increase in the specific activity of Rous sarcoma virus reverse transcriptase on incubation with protein kinase and ATP. Phosphoryla-of β and β′ subunits of E. coli RNA polymerase on infection by bacteriophage T7 has been implicated in the control of early transcription of T7 DNA12. Several groups5,13,14 have proposed and presented preliminary evidence that phosphorylation of RNA polymerase is involved in regulation of polymerase activity in eukaryotes. Jungmann et al.5 and Martelo and Hirsch13 observed enhanced RNA polymerase activity when partially purified protein kinase, RNA polymerase and ATP were mixed. They observed the phosphorylation of proteins in their preparations and attributed the increase in polymerase activity to phosphorylation of the enzyme. They did not demonstrate phosphorylation of RNA polymerase polypeptides, and since the observed increase in RNA polymerase activity could also be a consequence of phosphorylation of contaminating acidic nuclear proteins which can stimulate polymerase activity15–17, the cause of the enhanced polymerase activity is obscure. We report here the isolation of phosphorylated RNA polymerase I from yeast cells and the identification of the enzyme polypeptides phosphorylated in vivo. The same pattern of phosphorylation was obtained when highly purified RNA polymerase I was incubated with a yeast protein kinase preparation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roeder, R. G., and Rutter, W. J., Biochemistry, 9, 2543–2553 (1970).

    Article  CAS  Google Scholar 

  2. Roeder, R. G., J. biol. Chem., 249, 249–256 (1974).

    CAS  PubMed  Google Scholar 

  3. Gross, K. G., and Pogo, A. O., J. biol. Chem., 249, 568–576 (1974).

    CAS  PubMed  Google Scholar 

  4. Griswold, M. D., and Cohen, P. P., J. biol. Chem., 248, 5854–5860 (1973).

    CAS  PubMed  Google Scholar 

  5. Jungmann, R. A., Hiestand, P. C., and Schweppe, J. S., J. biol. Chem., 249, 5444–5451 (1974).

    CAS  PubMed  Google Scholar 

  6. Jensen, E. V., and DeSombre, E. R., A. Rev. Biochem., 41, 203–230 (1972).

    Article  CAS  Google Scholar 

  7. Means, A. R., and O'Malley, B. W., in Biochemistry of Cell Differentiation (edit. by Paul, J.), 161–180 (University Park Press, Baltimore, 1974).

    Google Scholar 

  8. Rutter, W. J., Goldberg, M. I., and Poniard, J. C., in Biochemistry of Cell Differentiation (edit. by Paul, J.), 267–300 (University Park Press, Baltimore, 1974).

    Google Scholar 

  9. Rubin, C. S., and Rosen, O. M., A. Rev. Biochem., 44, 831–887 (1975).

    Article  CAS  Google Scholar 

  10. Taborsky, G., in Advances in Protein Chemistry, 28 (edit. by Anfinsen, C. B., Edsall, J. T., and Richards, F. M.), 1–120 (Academic, New York, 1974).

    Google Scholar 

  11. Lee, S. G., Miceli, M. V., Jungmann, R. A., and Hung, P. P., Proc. natn Acad. Sci. U.S.A., 72, 2945–2949 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Zillig, W., et al., Proc. natn. Acad. Sci. U.S.A., 72, 2506–2510 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Martelo, O. J., and Hirsch, J., Biochem. biophys. Res. Commun., 58, 1008–1015 (1974).

    Article  CAS  Google Scholar 

  14. Rutter, W. J., Morris, P. W., Goldberg, M., Paule, M., and Morris, R. W., in The Biochemistry of Gene Expression in Higher Organisms (edit. by Polak, J. K., and Lee, J. W.), 89–104 (Australia and New Zealand Book Co., 1973).

    Book  Google Scholar 

  15. Shea, M., and Kleinsmith, L. J., Biochem. biophys. Res. Commun., 50, 473–477 (1973).

    Article  CAS  Google Scholar 

  16. Teng, C. S., Teng, C. T., and Allfrey, V. G., J. biol. Chem., 246, 3597–3609 (1971).

    CAS  PubMed  Google Scholar 

  17. Stein, G. S., Spelsberg, T. C., and Kleinsmith, L. J., Science, 183, 817–824 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Fink, G. R., Meth. Enzymol., 17A, 59–78 (1970).

    Article  Google Scholar 

  19. Cabib, E., Meth. Enzymol., 22, 120–122 (1971).

    Article  CAS  Google Scholar 

  20. Wintersberger, U., Smith, P., and Letnansky, K., Eur. J. Biochem., 33, 123–130 (1973).

    Article  CAS  Google Scholar 

  21. Valenzuela, P., Weinberg, F., Bell, G., and Rutter, W. J., J. biol. Chem., 251, 1464–1470 (1976).

    CAS  PubMed  Google Scholar 

  22. Laemmli, U. K., Nature, 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Takai, Y., Yamamura, H., and Nishizuka, Y., J. biol. Chem., 249, 530–535 (1974).

    CAS  PubMed  Google Scholar 

  24. Lerch, K., Muir, L. W., and Fischer, E. H., Biochemistry, 14, 2015–2023 (1975).

    Article  CAS  Google Scholar 

  25. Valenzuela, P., Hager, G. L., Weinberg, F., and Rutter, W. J., Proc. natn. Acad. Sci. U.S.A., 73, 1024–1028 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Hager, G. L., Holland, M. J., Valenzuela, P., Weinberg, F., and Rutter, W. J., in RNA Polymerase (edit. by Chamberlin, M., and Losick, R.), (Cold Spring Harbor Laboratory, New York, in the press).

  27. Huet, J., Buhler, J. M., Sentenac, A., and Fromageot, P., Proc. natn. Acad. Sci. U.S.A., 72, 3034–3038 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The online version of the original article can be found under https://doi.org/10.1038/262236c0

Rights and permissions

Reprints and permissions

About this article

Cite this article

BELL, G., VALENZUELA, P. & RUTTER, W. Phosphorylation of yeast RNA polymerases. Nature 261, 429–431 (1976). https://doi.org/10.1038/261429a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261429a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing