Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early role during chemical evolution for cytochrome P450 in oxygen detoxification

Abstract

IT is generally held that early in the evolutionary history of the Earth, when abiogenic chemicals were forming associations possessing attributes by which we now define living organisms, this planet had a reducing atmosphere. The subsequent appearance of free or molecular oxygen must have had a profound effect on such poorly specialised life forms and many would have perished. It was long assumed that the adaptive enzymatic changes of the successful forms were chiefly the elaboration of the respiratory chain enzymes, peroxidases and catalase. Research on superoxide dismutase1 has suggested that this enzyme may also have controlled oxygen toxicity in ancient living tissue. We have studied cytochrome P450, which also metabolises oxygen, and believe that this protein may possibly be more primitive than those considered previously and may even have emerged before the advent of atmospheric oxygen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fridovich, I., Adv. Enzym., 41, 35–97 (1974).

    CAS  Google Scholar 

  2. Estabrook, R. W., Franklin, M., Baron, J., Shigematsu, A., and Hildebrandt, A., in Drugs and Cell Regulation (edit. by Mihich, E.), 227 (Academic, New York, 1971).

    Google Scholar 

  3. Tsai, R. L., Gunsalus, I. C., and Dus, K., Biochem. biophys. Res. Commun., 45, 1300–1306 (1971).

    Article  CAS  Google Scholar 

  4. Yu, C.-A., Ganguli, B. N., Bartholomaus, R. C., and Gunsalus, I. C., Bact. Proc., 119 (1969).

  5. Wickramasinghe, R. H., Enzyme, 19, 348–376 (1975).

    Article  CAS  Google Scholar 

  6. Wickramasinghe, R. H., and McIntosh, E. N., Enzyme, 17, 210–226 (1974); Wickramasinghe, R. H., Enzyme, 17, 227–264 (1974).

    Article  CAS  Google Scholar 

  7. Cammer, W., and Estabrook, R. W., Archs Biochem. Biophys., 122, 721–734 (1967).

    Article  CAS  Google Scholar 

  8. Cardini, G., and Jurtshuk, P., J. biol. Chem., 245, 2789–2796 (1970).

    CAS  PubMed  Google Scholar 

  9. Gillette, J. R., et al., (eds), Microsomes and Drug Oxidations (Academic, New York, 1969).

  10. Gillette, J. R., Davis, D. C., and Sasame, H. A., A. Rev. Pharmac., 12, 57–84 (1972).

    Article  CAS  Google Scholar 

  11. Hrycay, E. G., and O'Brien, P. J., Archs Biochem. Biophys., 153, 480–494 (1972). Rahimtula, A. D., and O'Brien, P. J., Biochem. biophys. Res. Commun., 60, 440–447 (1974).

    Article  CAS  Google Scholar 

  12. Schleyer, H., Cooper, D. Y., and Rosenthal, O., Fedn Proc., 29, A925 (1970).

    Google Scholar 

  13. Waterman, M. R., and Mason, H. S., Biochem. biophys. Res. Commun., 39, 450–454 (1970).

    Article  CAS  Google Scholar 

  14. Ponnamperuma, C., (ed), Exobiology (North-Holland, Amsterdam, 1972).

  15. Ponnamperuma, C., The Origins of Life (Thames and Hudson, London, 1972).

    Google Scholar 

  16. Calvin, M., Am. Scient., 44, 248–263 (1956).

    Google Scholar 

  17. Wickramasinghe, R. H., Space Life Sci., 4, 341–352 (1973).

    ADS  CAS  PubMed  Google Scholar 

  18. Potts, J. R. M., Weklych, R., and Conn, E. E., J. biol. Chem., 249, 5019–5026 (1974).

    CAS  PubMed  Google Scholar 

  19. Ponnamperuma, C., and Gabel, N. W., Space Life Sci., 1, 64–96 (1968).

    ADS  CAS  PubMed  Google Scholar 

  20. Crapo, J. D., and Tierney, D. F., Am. J. Physiol., 226, 1401–1407 (1974).

    Article  CAS  Google Scholar 

  21. Oparin, A. I., in Exobiology (edit. by Ponnamperuma, C.), 1 (North-Holland, Amsterdam, 1972).

    Google Scholar 

  22. Wickramasinghe, R. H., Cytobios, 8, 81–94 (1973).

    CAS  PubMed  Google Scholar 

  23. Lascelles, J., in Oxygen in the Animal Organism, IUB Symp. series, 31, 657 (Macmillan, London, 1964).

    Book  Google Scholar 

  24. Mason, H. S., in Homologous Enzymes and Biochemical Evolution (edit. by Thoai, N. V., and Roche, J.), 69 (Gordon and Breach, New York, 1968).

    Google Scholar 

  25. Matus, V. K., Melik-Sarkisian, S. S., and Kretovick, V. L., Mikrobiologiia, 42, 112–118 (1973). Appleby, C. A., Biochim. biophys. Acta, 188, 222–229 (1969).

    CAS  PubMed  Google Scholar 

  26. Margulis, L., Origin of Eukaryotic Cells (Yale University Press, New Haven, 1970).

    Google Scholar 

  27. Sagan, C., J. theor. Biol., 39, 195–200 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WICKRAMASINGHE, R., VILLEE, C. Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256, 509–511 (1975). https://doi.org/10.1038/256509a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/256509a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing