Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal regime of the Earth's interior

Abstract

SEVERAL recent and apparently unrelated geophysical observations and deductions, when considered together, necessitate a fundamental re-examination of our ideas about the thermal state of the Earth's deep interior.

In summary they are:

(1) Precession must be discounted as a power source for the geomagnetic dynamo1, leaving core convection as the only plausible basic mechanism. Therefore the temperature gradient in the outer core cannot be less than adiabatic.

(2) The thermodynamic Grüneisen parameter for the outer core is about 1.4 and is only slightly pressure dependent (R. D. Irvine and F.D.S., unpublished).

(3) The resulting adiabatic gradient is much steeper than the Fe melting point gradient2 or the Fe–S eutectic gradient3.

(4) Continents and ocean floors are both mobile, although the ocean floors are much more so4, so that equality of the continental and oceanic heat fluxes which is observed5 (in spite of gross differences between the radioactive constituents of the continental and oceanic crusts) cannot be explained in terms of an association of depleted regions of the mantle with continents.

(5) Hot spots, across which the tectonic plates move, are not themselves moving perceptibly with respect to one another and are presumed to mark features of a rigid lower mantle4.

(6) A weak layer (asthenosphere) in the upper mantle allows virtually perfect isostatic balance of continent-sized blocks6 but the lower mantle must have greater strength. Low degree harmonic features of the geoid are supported by stresses at depths of several hundred kilometres7.

(7) Radiative transfer does not cause a dramatic increase in the thermal conductivity of mantle material at high temperatures8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rochester, M. G., EOS (Trans. Am. geophys. Un.), 56, 1108 (1974).

    Google Scholar 

  2. Higgins, G., and Kennedy, G. C., J. geophys. Res., 76, 1870 (1971).

    Article  ADS  Google Scholar 

  3. Tolland, H. G., Phys. Earth planet. Interiors, 8, 282 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Jordan, T. H., EOS (Trans Am. geophys. Un.), 56, 1102 (1974).

    Google Scholar 

  5. Lee, W. H. K., Phys. Earth planet. Interiors, 2, 332 (1970).

    Article  ADS  Google Scholar 

  6. Stacey, F. D., Physics of the Earth (Wiley, New York, 1969).

    Google Scholar 

  7. Higbie, J., and Stacey, F. D., Phys. Earth planet. Interiors, 4, 145 (1970).

    Article  ADS  Google Scholar 

  8. Fujisawa, H., Fujii, N., Mizutani, H., Kanamori, H., and Akimoto, S., J. Geophys. Res., 73, 4727 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Schatz, J. F., and Simmons, G., J. geophys. Res., 77, 6966 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Malkus, W. V. R., J. Geophys. Res., 68, 2871 (1963); Science, 160, 259 (1968).

    Article  ADS  Google Scholar 

  11. Bullard, E., and Gubbins, D., Nature, 232, 548 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Kennedy, G. C., and Higgins, G. H., J. geophys. Res., 78, 900 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Stacey, F. D., Geophys. J. R. astr. Soc., 33, 47 (1973).

    Article  ADS  Google Scholar 

  14. Elsasser, W. M., and Isenberg, I., Phys. Rev., 76, 469 (1949).

    CAS  Google Scholar 

  15. Sternheimer, R., Phys. Rev., 78, 235 (1950).

    Article  ADS  CAS  Google Scholar 

  16. Dziewonski, A. M., Hales, A. L., and Lapwood, E. R., Phys. Earthplanet. Interiors (in the press).

  17. Gardiner, R. B., and Stacey, F. D., Phvs. Earth planet. Interiors, 4, 406 (1971).

    Article  ADS  Google Scholar 

  18. Stacey, F. D., Geophys. Surveys, 1, 99 (1972).

    Article  ADS  Google Scholar 

  19. Morgan, W. J., Nature, 230, 42 (1971).

    Article  ADS  Google Scholar 

  20. Metchnik, V. I., Gladwin, M. T., and Stacey, F. D., J. Geomag. Geoelect. (Kyoto) 26, 405 (1974).

    Article  ADS  Google Scholar 

  21. Goles, G. G., in Handbook of Geochemistry, 1, (edit. by Wedepohl, K. H.), 116 (Springer, Berlin, 1969).

    Book  Google Scholar 

  22. Lewis, J. S., Earth planet. Sci. Lett., 11, 130 (1971).

    Article  ADS  CAS  Google Scholar 

  23. Hall, H. T., and Murthy, V. R., Earth planet. Sci. Lett., 11, 239 (1971).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STACEY, F. Thermal regime of the Earth's interior. Nature 255, 44–45 (1975). https://doi.org/10.1038/255044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/255044a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing